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Dealing with controversial information is an important issue in several application contexts. 
Formal argumentation enables reasoning on arguments for and against a claim to decide on an 
outcome. Dung’s abstract Argumentation Framework (AF) has emerged as a central formalism 
in argument-based reasoning. Key aspects of the success and popularity of Dung’s framework 
include its simplicity and expressiveness. Integrity constraints help to express domain knowledge 
in a compact and natural way, thus keeping easy the modeling task even for problems that 
otherwise would be hard to encode within an AF. In this paper, we first explore two intuitive 
semantics based on Kleene and Lukasiewicz logics, respectively, for AF augmented with (strong) 
constraints—the resulting argumentation framework is called Constrained AF (CAF). Then, we 
propose a new argumentation framework called Weak constrained AF (WAF) that enhances CAF 
with weak constraints. Intuitively, these constraints can be used to find “optimal” solutions to 
problems defined through CAF. We provide a detailed complexity analysis of CAF and WAF, 
showing that strong constraints do not increase the expressive power of AF in most cases, while 
weak constraints systematically increase the expressive power of CAF (and AF) under several well-

known argumentation semantics.

1. Introduction

Argumentation is a well-known human process used in our daily life to explain something, persuade people, derive conclusions, 
and in general it is fundamental during debates. Most of the situations where argumentation takes place are inherently characterized 
by the presence of controversial information. Enabling automated systems to process such kind of information, much in the same 
way as organized human discussions are carried out, is an important challenge that has deserved increasing attention from the 
Artificial Intelligence community in the last decades. This has led to the development of an important and active research area called 
formal argumentation [22,63], that has been explored in several application contexts, e.g., legal reasoning [19], decision support 
systems [12], E-Democracy [26], healthcare [91], medical applications [72], financial analysis [84], explanation of results [30], as 
well as multi-agent systems and social networks [73].

✩ This paper is a substantially revised and expanded version of [5].
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Fig. 1. (a) AF Λ of Example 1; (b) AF Λ′ of Example 3.

Dung’s abstract Argumentation Framework (AF) has emerged as a central formalism for modelling disputes between two or more 
agents [48]. An AF consists of a set of arguments and a binary attack relation over the set of arguments that specifies conflicts between 
arguments (if argument 𝑎 attacks argument 𝑏, then 𝑏 is acceptable only if 𝑎 is not). Hence, arguments are abstract entities whose role 
is determined by attacks. We can think of an AF as a directed graph whose nodes represent arguments and edges represent attacks. As 
for graph theory, an important aspect of the success of Dung’s framework is that it is a simple yet powerful formalism. The meaning 
of an AF is given in terms of argumentation semantics, which intuitively tell us the sets of arguments (called extensions) that can 
collectively be accepted to support a point of view in a dispute.

Despite the expressive power and generality of AFs, in some cases it is difficult to accurately model domain knowledge by an AF in 
a natural and easy-to-understand way. For this reason, Dung’s framework has been extended by the introduction of further constructs, 
such as preferences [10,79,69,6,7] and integrity constraints [41,17], to achieve more comprehensive, natural, and compact ways of 
representing useful relationships among arguments. In particular, enhancing AF with constraints allows us to naturally and compactly 
express domain conditions that need to be taken into account to filter out unfeasible solutions, as illustrated in the following example.

Example 1. Albert, Betty and Charlie wish to attend a basketball game on Saturday evening, but only two tickets are available. In 
an attempt to model this situation by an AF Λ, the following six arguments can be used: 𝑎 (resp., 𝑏, 𝑐) states that Albert (resp., 
Betty, Charlie) attends the game, whereas 𝑎̄ (resp., 𝑏̄, 𝑐) states that Albert (resp., Betty, Charlie) does not attend the game. The direct 
graph encoding Λ is shown in Fig. 1(a), where double arrows are used to represent mutually attacks between arguments. Specifically, 
argument 𝑎 (resp., 𝑏, 𝑐) attacks and is attacked by argument 𝑎̄ (resp., 𝑏̄, 𝑐), i.e., only one of them can be accepted. Moreover, argument 
𝑎̄ (resp., 𝑏̄, 𝑐) is attacked by the other two arguments 𝑏̄ and 𝑐 (resp., 𝑎̄ and 𝑐; 𝑎̄ and 𝑏̄) since the argument that Albert (resp., Betty, 
Charlie) attends the game can be accepted only if one of the arguments stating that Betty or Charlie (resp., Albert or Charlie; Albert 
or Betty) do not attend the game is accepted. Thus, the set of attacks between every pair in {𝑎̄, ̄𝑏, 𝑐} models the fact that at most one 
argument among 𝑎̄, 𝑏̄ and 𝑐 can be accepted and then, as a consequence, at least two arguments among 𝑎, 𝑏 and 𝑐 can be accepted, 
i.e., all available tickets are sold.

The extensions of the AF Λ under the well-known preferred and stable semantics are 𝐸1 = {𝑎, 𝑏, 𝑐}, 𝐸2 = {𝑎, ̄𝑏, 𝑐}, 𝐸3 = {𝑎̄, 𝑏, 𝑐}, 
and 𝐸4 = {𝑎, 𝑏, 𝑐}, where the presence of an argument in one of the 4 solutions means that it is accepted. However, the AF Λ fails to 
capture the knowledge we want to represent due to the presence of extension 𝐸4, which admits that three people attend the game, 
while only two tickets are available. □

With the aim of allowing for a more straightforward and compact encoding of knowledge, several frameworks extending AF 
have been proposed, such as Abstract Dialectical Framework (ADF) [36,92,33,24] and SETAF [80,62,54,55], where the situation of 
Example 1 can be modeled by using proper acceptance conditions over arguments or collective attacks, respectively (see Section 9 for 
a detailed discussion). Moreover, to overcome situations similar to that of Example 1, and thus providing a natural and compact 
way for expressing such kind of conditions, the use of constraints to filter extensions has been proposed. Considering our example, a 
constraint 𝜅 defined as

𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏

can be used. It states that the propositional formula 𝑎 ∧ 𝑏 ∧ 𝑐 must be false. That is, feasible solutions must satisfy the condition that 
the 3 arguments 𝑎, 𝑏, and 𝑐 are not jointly accepted, i.e., Albert, Betty and Charlie cannot attend the game together. The effect of 
using constraint 𝜅 is that 𝐸4 is discarded from the set of solutions of our problem.

The use of constraints in AF has been firstly proposed in [41] and then further investigated in [16–18]. The constrained argumen-

tation frameworks in [16] and [18] are particular cases of those in [17] as the set of constraints is restricted to atomic formulae only. 
We call an AF with constraints a Constrained AF (CAF).

Although constraints in CAF allow restricting the set of feasible solutions, they do not help in finding “best” or preferable solutions. 
Considering our running example, Albert, Betty and Charlie may agree on the fact that “if there are only two tickets available then Albert 
and Betty should preferably attend the game”. To express this kind of conditions, in this paper we introduce weak constraints, that is, 
constraints that are required to be satisfied if possible. Syntactically, weak constraints have the same form of the above-mentioned 
kind of constraints, that we call strong constraints. Intuitively, weak constraints can be used to find “optimal” solutions to a problem 
defined by means of an AF or a CAF, that is to filter out, from the set of feasible extensions of a given AF or CAF, the extensions which 
satisfy a maximal set (or a maximum number) of weak constraints.

A CAF with the addition of weak constraints is said to be a Weak constrained Argumentation Framework (WAF).

Example 2. Consider a WAF obtained by adding to the AF of Example 1 the constraint 𝜅 and the weak constraint 𝑤 = 𝚝 ⇒ 𝑎 ∧ 𝑏, 
2

stating that is desirable that Albert and Betty attend the game together. Herein, 𝚝 denotes the truth value 𝚝𝚛𝚞𝚎. Then, the extension 
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𝐸1 = {𝑎, 𝑏, 𝑐} is selected as the “best” one as it is the only one that satisfies the constraint 𝑤 asking for the presence of arguments 𝑎
and 𝑏. □

Weak constraints (also called relaxed constraints in some contexts) have been considered in several research areas, including 
Mathematical Programming with Equilibrium Constraints [86], Answer Set Programming [37,66], (weighted) Max-Sat [74], and for 
modelling and solving optimization problems [60]. In particular, concerning the field of Answer Set Programming, weak constraints 
have been implemented in DLV [9], a disjunctive logic programming system with (total) stable models semantics.

The use of strong and weak constraints substantially reduces the effort needed to figure out how to define an AF that models a 
given problem. In fact, as said before, constraints facilitate to express knowledge in a more compact and easy to understand way. For 
instance, the problem presented in Example 1, has been represented through an AF which expresses the condition that “at most one 
argument among 𝑎̄, 𝑏̄ and 𝑐 can be accepted” and then, as a consequence, at least two arguments among 𝑎, 𝑏 and 𝑐 can be accepted. 
However, this condition is not easy to be generalized if we have more than three people. Suppose there is a fourth person, David, who 
wishes to attend the game, and there are again only two available tickets. After adding the arguments 𝑑 (David attends the game) 
and 𝑑 (David does not attend the game) to AF Λ of Fig. 1(a), we cannot use the same reasoning as in Example 1 to model the fact 
that two of the four people attend the game. In fact, having the attacks between every pair in {𝑎̄, ̄𝑏, 𝑐, 𝑑} does not model this situation 
(it models that at least three of the four people attend the game). Remarkably, using strong and weak constraints allow for using a 
common reasoning pattern to generalize to this more complex situation, even starting from an AF having a simpler structure.

Example 3. Consider a WAF consisting of AF Λ′ of Fig. 1(b) and the following sets,  and  , of strong and weak constraints, 
respectively:

 = { 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏, 𝑎 ∧ 𝑏 ∧ 𝑑 ⇒ 𝚏, 𝑎 ∧ 𝑐 ∧ 𝑑 ⇒ 𝚏, 𝑏 ∧ 𝑐 ∧ 𝑑 ⇒ 𝚏 };
 = { 𝚝⇒𝑎, 𝚝⇒𝑏, 𝚝⇒ 𝑐, 𝚝⇒𝑑 }.

The strong constraints in  (that includes 𝜅 of Example 1) filter out from the (16 preferred) extensions of Λ′ the solutions where 
more than two people attend the game, whereas the weak constraints maximize the set (or number) of people attending the game 
since the “best” extensions are those that satisfy the maximal set (or number) of weak constraints, each asking for the presence of a 
person. □

It is worth mentioning that, although in this paper we consider ground constraints, the proposed framework can be easily extended 
to more general formulae with variables denoting arguments, whose ground version is a propositional formula. For instance, the 
strong and weak constraints in Example 3 could be written by using only one strong constraint of the form 𝑋 ∧ 𝑌 ∧ 𝑍 ∧ (𝑖𝑑(𝑋) ≠
𝑖𝑑(𝑌 )) ∧ (𝑖𝑑(𝑋) ≠ 𝑖𝑑(𝑍)) ∧ (𝑖𝑑(𝑌 ) ≠ 𝑖𝑑(𝑍)) ⇒ 𝚏 and only one weak constraint 𝚝⇒𝑋, where 𝑋, 𝑌 and 𝑍 are variables whose domain 
is the set of arguments, and 𝑖𝑑(𝑋) denotes the identifier of the argument associated to 𝑋 (e.g. the pointer to the object).

1.1. Contributions

In this paper, after introducing CAF and WAF, we investigate the complexity of both credulous and skeptical reasoning in these 
argumentation frameworks. Credulous and skeptical reasoning are well-known approaches to deal with uncertain information rep-

resented by the presence of multiple solutions. In our context, an argument is credulously accepted if there exists a solution (i.e., 
an extension of the considered framework) containing that argument, whereas an argument is skeptically accepted if it occurs in all 
solutions.

We provide the complexity results that are summarized in Tables 1 and 2 (reported at the end of Section 5), where 𝐶𝐴 (resp., 𝑆𝐴 ) 
denotes the credulous (resp., skeptical) acceptance problem under one of the following argumentation semantics  : complete (𝚌𝚘), 
stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝). Moreover, since we will consider two alternative 3-valued logics for interpreting 
the constraints, that is, Kleene logic and Lukasiewicz logic, in the above-mentioned tables we also use the notations 𝐶𝐴𝜎


(resp., 𝑆𝐴𝜎


) 

to denote the credulous (resp., skeptical) acceptance problem under semantics  and logic interpretation 𝜎; herein, 𝜎 = 𝐾 (resp., 
𝜎 = 𝐿; 𝜎 =∗) denotes Kleene (resp., Lukasiewicz; either Kleene or Lukasiewicz) logic interpretation of the constraints.

More in detail, we make the following main contributions.

• We propose the CAF framework by relying on a simple yet expressive form of constraints that are interpreted using either Kleene 
or Lukasiewicz logic, leading to intuitive constraints’ semantics.

• We investigate the complexity of 𝐶𝐴𝜎


and 𝑆𝐴𝜎


for CAF under four popular semantics, showing that it remains the same as for 
AF in all cases except the cases of i) credulous acceptance under preferred semantics and Lukasiewicz logic, and ii) skeptical 
acceptance under stable semantics (irrespective of the logic considered for interpreting the constraints), where the complexity 
increases of one level in the polynomial hierarchy.

• We introduce the WAF framework and propose two criteria for interpreting weak constraints, under any argumentation semantics 
 : maximal-set (𝚖𝚜) and maximum-cardinality (𝚖𝚌) according to which the best/optimal  -extensions are those satisfying a 
maximal set, or a maximum number, of weak constraints, respectively.

• We investigate the complexity of the credulous and skeptical acceptance problems for WAF, where they are denoted as 𝐶𝐴𝜎
𝚖𝚜 and 
3

𝑆𝐴𝜎
𝚖𝚜 , and 𝐶𝐴𝜎

𝚖𝚌 and 𝑆𝐴𝜎
𝚖𝚌 , respectively, depending on the considered criterion (maximal-set or maximum-cardinality) adopted 
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for interpreting the weak constraints (with 𝜎 ∈ {𝐾, 𝐿}). We show that, differently from strong constraints, the introduction of 
weak constraints typically increases the complexity of the considered problems of one level in the polynomial hierarchy.

• We introduce Stratified WAF (SWAF) and investigate a restriction of SWAF, called Linear WAF (LWAF), where constraints are 
linearly ordered. It turns out that, in most cases WAF and SWAF have the same complexity under maximal-set semantics, while 
WAF are in general less expressive than SWAF under maximum-cardinality semantics. Moreover, for LWAF the maximal-set and 
maximum-cardinality semantics coincide, thus we simply use the notations 𝐶𝐴𝜎


and 𝑆𝐴𝜎


(with 𝜎 ∈ {𝐾, 𝐿}) for denoting the 

credulous and skeptical acceptance, respectively. For LWAF, the complexity of 𝐶𝐴𝜎


and 𝑆𝐴𝜎


generally decreases w.r.t. that of 
WAF under maximal-set semantics, though it is higher than that of CAF and that of WAF under maximum-cardinality semantics.

• Finally, we investigate the case of NCAF and NWAF, that is, CAF and WAF, respectively, where constraints are expressed by 
negative constraints, i.e., denials constraints whose body is a conjunction of literals (used in several contexts such as databases 
and logic programming), and show that the complexity of 𝐶𝐴∗


for the preferred semantics decreases (irrespective of the logic 

considered for interpreting the constraints).

This paper refines and substantially extends the work in [5]. In particular, we have extended the form of constraints considered, 
which are defined through formulae of one of the two forms 𝜑 ⇒ 𝑣 and 𝑣 ⇒ 𝜑, where 𝑣 is a truth value (𝚏, 𝚞, 𝚝) and 𝜑 is a first 
order formula built over the alphabet of arguments. The formula 𝜑 can now also contain the implication ⇒ (which is a primitive 
operator in the Lukasiewicz logic) and equivalence ⇔ operators, whereas in [5] 𝜑 could be built by using the ∧, ∨ and ¬ operators 
only. We investigate CAF, WAF, SWAF, LWAF and NWAF under two alternative 3-valued logics which differ in the interpretation of 
the implication operator: Kleene logic and Lukasiewicz logic. In contrast, in [5] only Lukasiewicz logic is considered for interpreting 
the constraints; moreover, the complexity of SWAF is not addressed at all in [5]. We provide tight complexity bounds and close a 
gap left open in [5] for the complexity of the credulous acceptance problem in CAF (interestingly, although we provide a stronger 
hardness result, our result holds even for the simpler form of constraints considered in [5]). Overall, we provide a detailed analysis 
of AF with strong and weak constraints interpreted under Kleene or Lukasiewicz logic, with maximal-set and maximum-cardinality 
interpretations of weak constraints, under four popular argumentation semantics, by also considering several restrictions on the forms 
of the constraints: stratified, linearly ordered, and negative constraints. We also show that some preference-based AFs can be encoded 
in WAF and that CAF (and thus WAF) is more expressive than LabCAF, that is a CAF framework where constraints are defined over 
the alphabet of labelled arguments [21]. The new material includes all the proofs of the results stated in the core of the paper as well 
as the proofs of useful auxiliary results stated in the appendix (it is worth mentioning that some of those results are of independent 
interest, e.g., the mapping from DLPs to logic programs with weak constraints under maximal-set semantics, which entails that the 
latter are no less expressive than DLPs, see Appendix C.1).

1.2. Organization

The rest of the paper is organized as follows. The abstract argumentation framework and the complexity classes used in the paper 
are recalled in Section 2. In Section 3 we discuss the syntax and semantics of the forms of CAF presented in the literature, whereas in 
Section 4 we introduce a simple yet expressive form of constraints that are interpreted under either Kleene or Lukasiewicz logic and 
lead to the CAF frameworks on which we focus in this paper. This section also analyzes the computational complexity of the credulous 
and skeptical acceptance problems in CAF. Next, in Section 5, we introduce WAF, which extends CAF through the introduction of weak 
constraints, and formally define the meaning of WAF under the maximal-set and maximum-cardinality semantics, and investigate the 
complexity of credulous and skeptical reasoning (Sections 5.1 and 5.2, respectively). In Section 6 we introduce SWAF and investigate 
the computational complexity of SWAF and of the special case of LWAF, whereas in Section 7 we deal with the credulous and skeptical 
acceptance for NCAF and NWAF. In Section 8, we discuss the relationship between WAF and preferences in AF, showing that some 
preference-based AFs can be encoded in WAFs. Related work is discussed in Section 9, while in Section 10 conclusions are drawn and 
directions for future work are outlined.

To ease readability, in the core of the paper we provide only the proofs regarding CAF (that is, the basic AF extension studied 
in Section 4) as well as the proof concerning the encoding of PAF into WAF given in Section 8. All the other proofs concerning 
the remaining results on WAF, SWAF, LWAF and NWAF are given in Appendix A. The paper also contains four further appendixes, 
organized as follows. Since some proofs given in Appendix A rely on exploiting some results from disjunctive logic programming (DLP) 
and logic programming with weak constraints (LPWC), to make the paper self-contained, Appendix B contains useful material on DLP, 
whereas Appendix C introduces LPWC and its relationships with DLP and WAF. Moreover, in Appendix D, we show the relationship 
between CAF (and thus WAF) and AF with labelled constraints (namely, LabCAF), which is a kind of Epistemic Argumentation 
Framework [89] with a restricted modal operator. Finally, Appendix E briefly recalls the syntax and the semantics of the Abstract 
Dialectical Framework (ADF) [36], whose relationship with CAF and WAF is discussed in Section 9.

2. Preliminaries

In this section, we briefly review Dung’s framework and some basic notions about computational complexity.

2.1. Argumentation framework

An abstract Argumentation Framework (AF) is a pair ⟨, ⟩, where  is a set of arguments and  ⊆  × is a set of attacks. If 
4

(𝑎, 𝑏) ∈ then we say that 𝑎 attacks 𝑏.



Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 2. AF Λ of Example 4.

Given an AF Λ = ⟨, ⟩ and a set 𝑆 ⊆  of arguments, an argument 𝑎 ∈ is said to be i) defeated w.r.t. 𝑆 iff ∃𝑏 ∈ 𝑆 such that 
(𝑏, 𝑎) ∈ , and ii) acceptable w.r.t. 𝑆 iff for every argument 𝑏 ∈  with (𝑏, 𝑎) ∈ , there is 𝑐 ∈ 𝑆 such that (𝑐, 𝑏) ∈ . The sets of 
defeated and acceptable arguments w.r.t. 𝑆 are defined as follows (where Λ is fixed):

𝑖) 𝐷𝑒𝑓 (𝑆) = {𝑎 ∈ | ∃𝑏 ∈ 𝑆 . (𝑏, 𝑎) ∈};

𝑖𝑖) 𝐴𝑐𝑐(𝑆) = {𝑎 ∈ | ∀𝑏 ∈ . (𝑏, 𝑎) ∉ ∨ 𝑏 ∈ 𝐷𝑒𝑓 (𝑆)}.

Given an AF ⟨, ⟩, a set 𝑆⊆ of arguments is said to be:

• conflict-free iff 𝑆 ∩𝐷𝑒𝑓 (𝑆) = ∅;

• admissible iff it is conflict-free and 𝑆 ⊆ 𝐴𝑐𝑐(𝑆).

Different argumentation semantics have been proposed to characterize collectively acceptable sets of arguments, called exten-

sions [48,39]. Every extension is an admissible set satisfying additional conditions. Specifically, the complete, preferred, stable, 
semi-stable, and grounded extensions of an AF are defined as follows.

Given an AF ⟨, ⟩, a set 𝑆 ⊆  is an extension called:

• complete (𝚌𝚘) iff it is an admissible set and 𝑆 = 𝐴𝑐𝑐(𝑆);
• preferred (𝚙𝚛) iff it is a maximal (w.r.t. ⊆) complete extension;

• stable (𝚜𝚝) iff it is a total preferred extension, i.e., a preferred extension such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) =;

• semi-stable (𝚜𝚜𝚝) iff it is a preferred extension such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) is maximal (w.r.t. ⊆);

• grounded (𝚐𝚛) iff it is the smallest (w.r.t. ⊆) complete extension.

Arguments occurring in an extension are said to be accepted, whereas arguments attacked by accepted arguments are said to be 
rejected; remaining arguments are said to be undecided (w.r.t. the considered extension).

The set of complete (resp. preferred, stable, semi-stable, grounded) extensions of an AF Λ will be denoted by 𝚌𝚘(Λ) (resp. 𝚙𝚛(Λ), 
𝚜𝚝(Λ), 𝚜𝚜(Λ), 𝚐𝚛(Λ)). It is well-known that the set of complete extensions forms a complete semilattice w.r.t. ⊆, where 𝚐𝚛(Λ) is 
the meet element, whereas the greatest elements are the preferred extensions [48]. All the above-mentioned semantics except the 
stable semantics admit at least one extension. The grounded semantics, that admits exactly one extension, is said to be a unique status

semantics, while the others are multiple status semantics. With a little abuse of notation, in the following we also use 𝚐𝚛(Λ) to denote 
the grounded extension. For any AF Λ the following inclusion relations hold: i) 𝚜𝚝(Λ) ⊆ 𝚜𝚜(Λ) ⊆ 𝚙𝚛(Λ) ⊆ 𝚌𝚘(Λ), ii) 𝚐𝚛(Λ) ∈ 𝚌𝚘(Λ), 
and iii) 𝚜𝚝(Λ) ≠ ∅ implies that 𝚜𝚝(Λ) = 𝚜𝚜(Λ).

Example 4. Let Λ = ⟨ = {𝑎, 𝑏, 𝑐},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑐)}⟩ be the AF shown in Fig. 2. AF Λ has three complete extensions: 
𝐸1 = ∅, 𝐸2 = {𝑎}, 𝐸3 = {𝑏}. Moreover, the set of preferred extensions is {𝐸2, 𝐸3}, whereas the set of stable (and semi-stable) extensions 
is {𝐸3}, and the grounded extension is 𝐸1. □

Credulous and skeptical acceptance Given an AF framework Λ, an argument 𝑎, and an argumentation semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 
𝚐𝚛},

• the credulous acceptance problem, denoted as 𝐶𝐴 , is the problem of deciding whether argument 𝑎 is credulously accepted, that 
is, deciding whether 𝑎 belongs to at least an  -extension of Λ.

• the skeptical acceptance problem, denoted as 𝑆𝐴 , is the problem of deciding whether argument 𝑎 is skeptically accepted, that 
is, deciding whether 𝑎 belongs to every  -extension of Λ.

Clearly, for the grounded semantics, which admits exactly one extension, these problems become identical. The above-defined notions 
of credulous and skeptical acceptance will be also used in the context of the frameworks extending AF discussed in the paper (e.g., 
CAF and WAF), that is, by ranging on extensions of those frameworks when checking for the presence of a given argument 𝑎 in any 
or all extensions in the process of credulous and skeptical acceptance, respectively.

2.2. Complexity classes

We recall here the main complexity classes used in the paper and, in particular, the definition of the classes Σ𝑝

𝑘
, Π𝑝

𝑘
and Δ𝑝

𝑘
, with 

𝑘 ≥ 0 (see e.g. [82]):
5

• Σ𝑝

0 = Π𝑝

0 = Δ𝑝

0 = 𝑃 ;
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• Σ𝑝

1 = 𝑁𝑃 and Π𝑝

1 = 𝑐𝑜𝑁𝑃 ;

• Δ𝑝

𝑘
=𝑃

Σ𝑝

𝑘−1 , Σ𝑝

𝑘
=𝑁𝑃

Σ𝑝

𝑘−1 , and Π𝑝

𝑘
=𝑐𝑜Σ𝑝

𝑘
, ∀𝑘 > 0.

Thus, 𝑃 𝐶 (resp., 𝑁𝑃 𝐶 ) denotes the class of problems that can be solved in polynomial time using an oracle in the class 𝐶 by a 
deterministic (resp., non-deterministic) Turing machine. Θ𝑝

𝑘
denotes the subclass of Δ𝑝

𝑘
containing the problems that can be solved 

in polynomial time by a deterministic Turing machine by performing a number of calls bounded by 𝑂(𝑙𝑜𝑔 𝑛) to an oracle in the class 
Σ𝑝

𝑘−1, that is, Θ𝑝

𝑘
=Δ𝑝

𝑘
[𝑙𝑜𝑔 𝑛]. Under standard complexity-theoretic assumptions, we have that:

• Σ𝑝

𝑘
⊂ Θ𝑝

𝑘+1 ⊂ Δ𝑝

𝑘+1 ⊂ Σ𝑝

𝑘+1⊂𝑃𝑆𝑃𝐴𝐶𝐸 and

• Π𝑝

𝑘
⊂ Θ𝑝

𝑘+1 ⊂ Δ𝑝

𝑘+1 ⊂ Π𝑝

𝑘+1 ⊂ 𝑃𝑆𝑃𝐴𝐶𝐸.

For AF, the complexity of the credulous and skeptical acceptance problems has been investigated in [48] for the grounded se-

mantics, in [45] for the stable semantics, in [45,49] for the preferred semantics, and in [51,56] for the semi-stable semantics. These 
results are thoroughly discussed in [53], and summarized in the second column of Tables 1 and 2.

3. Constrained argumentation frameworks

We review the Constrained Argumentation Framework (CAF) introduced in [41] and further investigated in [17].

We assume that, given a set of propositional symbols 𝑆 , 𝑆 denotes the propositional language defined in the usual inductive way 
from 𝑆 using the built-in constants 𝚏, 𝚞, and 𝚝 denoting the truth values 𝚏𝚊𝚕𝚜𝚎, 𝚞𝚗𝚍𝚎𝚏 (undefined),1 and 𝚝𝚛𝚞𝚎, and the connectives 
∧, ∨, ¬, ⇒ and ⇔.

Definition 1 (Constrained Argumentation Framework). A Constrained Argumentation Framework (CAF) is a triple Ω = ⟨, , ⟩ where ⟨, ⟩ is an AF and  is a set of propositional formulae built from .

3.1. CAF semantics

Given an AF ⟨, ⟩ and a conflict-free set 𝑆 ⊆ , the truth value of an argument 𝑎 ∈ w.r.t. 𝑆 is denoted by 𝜗𝜎
𝑆
(𝑎), where 𝜎

denotes the underlying 3-valued logic, or simply 𝜗𝜎 (𝑎) whenever 𝑆 is given, and is defined as follows:

𝜗𝜎(𝑎) =
⎧⎪⎨⎪⎩
𝚝𝚛𝚞𝚎 𝑖𝑓 𝑎 ∈ 𝑆

𝚏𝚊𝚕𝚜𝚎 𝑖𝑓 ∃ 𝑏 ∈ 𝑆 𝑠.𝑡. (𝑏, 𝑎) ∈

𝚞𝚗𝚍𝚎𝚏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Observe that, for a given (complete) extension 𝐸, 𝜗𝜎 (𝑎) is 𝚝𝚛𝚞𝚎 (resp., 𝚏𝚊𝚕𝚜𝚎, 𝚞𝚗𝚍𝚎𝚏) iff 𝑎 ∈ 𝐴𝑐𝑐(𝐸) (resp., 𝑎 ∈ 𝐷𝑒𝑓 (𝐸), 𝑎 ∈
 ⧵ (𝐴𝑐𝑐(𝐸) ∪𝐷𝑒𝑓 (𝐸))).

Assuming that ¬𝚞𝚗𝚍𝚎𝚏 = 𝚞𝚗𝚍𝚎𝚏, and the ordering on truth values 𝚏𝚊𝚕𝚜𝚎 < 𝚞𝚗𝚍𝚎𝚏 < 𝚝𝚛𝚞𝚎, using a 3-valued logic 𝜎 we have 
that 𝜗𝜎 (𝜑 ∧𝜓) = 𝑚𝑖𝑛(𝜗𝜎(𝜑), 𝜗𝜎(𝜓)), 𝜗𝜎 (𝜑 ∨𝜓) = 𝑚𝑎𝑥(𝜗𝜎(𝜑), 𝜗𝜎(𝜓)) and 𝜗𝜎(¬𝑎) = ¬𝜗𝜎(𝑎). It is important to note that, regarding the 
operator ⇒, there is no consensus on how its semantics should be defined. In the following, we first review the semantics proposed 
in [41] and [17] (in Sections 3.1.1 and 3.1.2, respectively); the former relying on classical 2-valued semantics, the latter relying on 
3-valued semantics. Then, we introduce new three-valued semantics based on Kleene’s logic and Lukasiewicz’s logic in Section 4.

After that we have defined the semantics of the implication operator ⇒, i.e. have fixed the underlying 3-valued logic, we can also 
define the semantics of the equivalence operator ⇔ as follows: 𝜗𝜎 (𝜑 ⇔ 𝜓) = 𝜗𝜎(𝜙 ⇒ 𝜓) ∧ 𝜗𝜎(𝜓 ⇒ 𝜑). Moreover, we say that a given 
set 𝑆 satisfies a set of constraints  (written 𝑆 ⊧ ) if 𝜗𝜎

(⋀
𝜑∈ 𝜑

)
= 𝚝𝚛𝚞𝚎. We also say that  is satisfiable, under a given logic 𝜎, 

if there exists a set 𝑆 such that 𝑆 ⊧  according to 𝜎.

In the following, for the different semantics we redefine the evaluation function only for the cases where it differs from the generic 
function 𝜗𝜎 previously discussed and for formulae using the implication operator.

3.1.1. Semantics of Coste-Marquis et al.

The semantics proposed in [41] is based on a (2-valued) evaluation of the truth value of an argument 𝑎 w.r.t. a given set 𝑆 of 
arguments (denoted as 𝜗2

𝑆
(𝑎)), which is defined as follows:

𝜗2
𝑆
(𝑎) =

{
𝚝𝚛𝚞𝚎 𝑖𝑓 𝑎 ∈ 𝑆

𝚏𝚊𝚕𝚜𝚎 𝑖𝑓 𝑎 ∉ 𝑆

Recalling that under 2-valued interpretation 𝜑 ⇒ 𝜓 ≡ ¬𝜑 ∨𝜓 , we have that 𝜗2
𝑆
(𝜑 ⇒ 𝜓) = 𝜗2

𝑆
(¬𝜑 ∨𝜓).

1 As it will be clearer in the following, undefined (𝚞𝚗𝚍𝚎𝚏) is a third value (in addition to the two classical values used in Boolean logic) which intuitively means 
6

neither true nor false.
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Fig. 3. AF ⟨,⟩ underlying CAF Ω of Example 5.

Definition 2 (C-admissible set). Given a CAF Ω = ⟨, , ⟩ and a set 𝑆 ⊆ , 𝑆 is a 𝐶 -admissible set for Ω if and only if 𝑆 is an 
admissible set for ⟨, ⟩ and 𝑆 ⊧ .

Example 5. As an example, consider the CAF Ω = ⟨, ,  = {𝑏 ⇒ 𝚏}⟩, where the AF ⟨ = {𝑎, 𝑏},  = {(𝑎, 𝑏), (𝑏, 𝑎)}⟩ is shown 
in Fig. 3, and the three sets 𝑆0 = ∅, 𝑆1 = {𝑎}, and 𝑆2 = {𝑏}. We have that (𝑖) 𝜗2

𝑆0
(𝑎) = 𝜗2

𝑆0
(𝑏) = 𝚏𝚊𝚕𝚜𝚎, (𝑖𝑖) 𝜗2

𝑆1
(𝑎) = 𝚝𝚛𝚞𝚎 and 

𝜗2
𝑆1
(𝑏) = 𝚏𝚊𝚕𝚜𝚎, (𝑖𝑖𝑖) 𝜗2

𝑆2
(𝑎) = 𝚏𝚊𝚕𝚜𝚎 and 𝜗2

𝑆2
(𝑏) = 𝚝𝚛𝚞𝚎. Therefore, 𝑆0 ⊧  and 𝑆1 ⊧ , meaning that they are -satisfiable, whereas 

𝑆2 is not -satisfiable since 𝑆2 ̸⊧ . □

A constrained argumentation framework Ω = ⟨, , ⟩ is consistent when it has a 𝐶 -admissible set for Ω.

Definition 3 (Preferred/Stable C-extension). Let Ω = ⟨, , ⟩ be a CAF. A 𝐶 -admissible set 𝐸 ⊆  for Ω is

• a preferred 𝐶 -extension of Ω if and only if ∄ 𝐸′ ⊆  such that 𝐸 ⊂ 𝐸′ and 𝐸′ is 𝐶 -admissible for Ω;

• a stable 𝐶 extension if and only if it is a total preferred 𝐶 -extension.

A drawback of the semantics proposed in [41] is that in checking whether an extension 𝐸 satisfies a set of constraints it does not 
distinguish between false and undefined arguments. Thus, a constraint of the form 𝑎 ∧ ¬𝑎 ⇒ 𝚏 is always satisfied, even if the truth 
value of 𝑎 would be undefined w.r.t. a 3-valued logic.

3.1.2. Arieli’s semantics

The semantics proposed in [17] for checking constraints’ satisfaction assumes a 3-valued interpretation based on the Slupecki’s 
logic. In particular, it assumes the standard interpretation for the assignment of truth values to atoms (i.e., arguments) and expressions 
using the ¬, ∧ and ∨ operators, whereas for the implication operator ⇒ (for which there is no standard interpretation) it assumes the 
Slupecki’s interpretation which is defined as follows:

𝜗𝑆𝑙(𝜑 ⇒ 𝜓) =

{
𝚝𝚛𝚞𝚎 𝑖𝑓 𝜗𝑆𝑙(𝜑) ∈ {𝚏𝚊𝚕𝚜𝚎,𝚞𝚗𝚍𝚎𝚏}
𝜗𝑆𝑙(𝜓) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A natural requirement for constraints applied to argumentation frameworks is that they should have admissible interpretations: 
the constraints themselves should not be contradictory and every argument that is satisfied by an extension should not be exposed 
to undefended attacks (w.r.t. the extension).

Definition 4 (Admissible constraint). Let Λ = ⟨, ⟩ be an AF. A set  of formulae is called admissible (for Λ) if there exists an 
admissible set 𝑆 ⊆  for ⟨, ⟩ such that 𝑆 ⊧ .

Assuming that constraints are admissible, extensions for a CAF are defined as follows.

Definition 5 ( -extension of a CAF). Let Ω = ⟨, , ⟩ be a CAF, where  is an admissible set of constraints, and let  be a semantics 
for ⟨, ⟩. Then 𝐸 ⊆  is an  -extension of Ω if it is an  -extension of ⟨, ⟩ and 𝐸 ⊧ .

The main difference between the two CAF semantics briefly reviewed in this section is as follows. In Coste-Marquis et al. (2006) [41]

the truth value of arguments is false for every argument not belonging to the considered extension (even for those that are undecided) 
and satisfiability of constraints is evaluated with respect to two-valued semantics. It follows, e.g., that a constraint of the form 
𝚝 ⇒ 𝑎 ∨ ¬𝑎 is useless according to [41] (since it is always satisfied). In contrast, in the Arieli’s 3-valued semantics this constraint 
indicates that argument 𝑎 cannot have a neutral, undefined, status. The use of 3-valued semantics allows us to distinguish between 
different conditions on arguments. For instance, the constraint 𝚝⇒ ¬𝑎 means that 𝑎 should be rejected, while the constraint 𝑎 ⇒ 𝚏 is 
a somewhat weaker demand: 𝑎 should not be accepted, and so its status may be undecided.

A drawback of Arieli’s semantics, due to the assumption of the Slupecki’s logic for interpreting the implication operator, is that 
it does not distinguish two constraints of the form 𝜑 ⇒ 𝚏 and 𝜑 ⇒ 𝚞, though it distinguishes two constraints of the form 𝚝⇒ 𝜑 and 
𝚞⇒ 𝜑.

4. Revisiting the CAF semantics

In this section, we investigate two new 3-valued semantics for constraints satisfaction in CAF. The reason for considering 3-valued 
satisfaction is that all the AF semantics, except the stable one, are 3-valued and constraints satisfaction under 2-valued logic (obtained 
7

by interpreting the undefined truth value as either true or false) such as the one discussed in Section 3.1.1 is not satisfactory. We restrict 
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𝜗𝐾 (𝜑 ⇒ 𝜓) 𝜗𝐾 (𝜓)
f u t

𝜗𝐾 (𝜑)
f t t t

u u u t

t f u t

Kleene

𝜗𝐿(𝜑 ⇒ 𝜓) 𝜗𝐿(𝜓)
f u t

𝜗𝐿(𝜑)
f t t t

u u t t

t f u t

Lukasiewicz

𝜗𝑆𝑙(𝜑 ⇒ 𝜓) 𝜗𝑆𝑙(𝜓)
f u t

𝜗𝑆𝑙(𝜑)
f t t t

u t t t

t f u t

Slupecki

Fig. 4. Semantics of the implication operator 𝜑 ⇒ 𝜓 .

our attention to logics which extend the classical 2-valued logic and differ one from the other in the semantics of the implication 
operator only.2 Among these we focus our attention to the most well-known 3-valued logics: Kleene’s logic and Lukasiewicz’s logic.

The tables in Fig. 4 report three different semantics for the implication operator: Kleene and Lukasiewicz logics are at the basis 
of the semantics studied in this paper, whereas Slupecki logic is at the basis of the semantics studied in [17]. In the following, 

denotes the propositional language defined from a set of arguments  and truth values (𝚏, 𝚞 and 𝚝) and the standard connectives (∧, 
∨, ¬, ⇒ and ⇔).

Moreover, we use the evaluation functions 𝜗𝐾 whenever we refer to the Kleene’s logic, and 𝜗𝐿 whenever we refer to the 
Lukasiewicz’s logic.

Thus, under Kleene’s logic we have that 𝜗𝐾 (𝜑 ⇒ 𝜓) = 𝜗𝐾 (¬𝜑 ∨𝜓), whereas under Lukasiewicz’s logic 𝜗𝐿(𝜑 ⇒ 𝜓) = 𝜗𝐿(¬𝜑 ∨𝜓) ∨
(𝜗𝐿(𝜑) = 𝜗𝐿(𝜓)).3 A nice property of Kleene’s logic is that it preserves the equivalence 𝜑 ⇒ 𝜓 ≡ ¬𝜑 ∨ 𝜓 . Moreover, concerning the 
implication operator, differently from other logics (e.g. Lukasiewicz, Slupecki’s and Priest’s), Kleene’s logic preserves equivalence 
of formulae when elements of the disjunctive head are moved to the body (after negating them), or elements of the conjunctive 
body are moved to the head (after negating them), analogously to the case of 2-valued semantics. On the other side, Kleene’s logic 
does not preserve the axiom 𝜑 ⇒ 𝜑, which is instead valid under Lukasiewicz’s logic (as well as Slupecki and Godel logics). For 
formulae defining constraints, Lukasiewicz logic allows to distinguish 𝜑 ⇒ 𝚏 from 𝜑 ⇒ 𝚞 and 𝚝 ⇒ 𝜑 from 𝚞 ⇒ 𝜑, while Kleene’s 
logic does not. Another reason for investigating CAF under the two different above-mentioned 3-valued logics is the complexity of 
the expressivity of the two derived frameworks. Indeed, as we will show in the paper, the fact that Lukasiewicz’s logic allows us to 
express finer constraints gives rise, for some semantics (e.g. the preferred one), to a more expressive framework characterized by a 
higher computational complexity.

Definition 6 ((Strong) constraint). A (strong) constraint is a formula of one of the following forms: (𝑖) 𝜑 ⇒ 𝑣, or (𝑖𝑖) 𝑣 ⇒ 𝜑, where 𝜑 is 
a propositional formula in  and 𝑣 ∈ {𝚏, 𝚞, 𝚝}. A constraint is said boolean when 𝑣 ∈ {𝚏, 𝚝}. A boolean constraint of the form 𝜑 ⇒ 𝚏
where 𝜑 is a conjunction containing arguments or negated arguments is called denial (or negative) constraint.

In the following, we refer to both Kleene and Lukasiewicz logics. We assume that the set of constraints is satisfiable, that is, that 
there is an assignment of truth values to the arguments that makes all constraints true under the given logic (Kleene’s or Lukasiewicz’s). 
Checking whether a constraint is satisfied by a set of arguments 𝑆 under Kleene logic consists in checking whether the body is false 
or the head is true (w.r.t. 𝑆), whereas under the Lukasiewicz logic is equivalent to check whether the body is false or the head is true 
or the truth values of head and body coincide (w.r.t. 𝑆). We also assume that  is a set of (satisfiable) constraints built from  as 
defined in Definition 6.

Example 6. Under Lukasiewicz logic we have that:

• the constraint 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏 states that at least one of the arguments 𝑎, 𝑏 and 𝑐 must be false, whereas 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚞 states that 𝑎, 
𝑏 and 𝑐 cannot be all true.

• the constraint (𝑎 ⇒ 𝑏) ⇒ 𝚏 states that the implication 𝑎 ⇒ 𝑏 must be false, that is 𝑎 must be true and 𝑏 must be false.

• the constraint (𝑎 ⇒ 𝑏) ⇒ 𝚞 states that the implication 𝑎 ⇒ 𝑏 cannot be true, that is the truth value of 𝑎 must be greater than that 
of 𝑏. □

Clearly, constraints of the forms 𝚏 ⇒ 𝜑 and 𝜑 ⇒ 𝚝 are useless because always satisfied. Regarding the stable semantics, which 
is 2-valued, only the symbols 𝚏 and 𝚝 can be used and (all) interpretations of the implication operator coincide with the classical 
2-valued interpretation. Thus, a constraint 𝜑 ⇒ 𝚞 is interpreted as 𝜑 ⇒ 𝚏, whereas a constraint 𝚞⇒ 𝜓 is interpreted as 𝚝⇒ 𝜓 .

The next definition introduces two new semantics for CAF, where 𝜎 = 𝐾 (resp., 𝜎 = 𝐿) denotes the Kleene (resp., Lukasiewicz) 
semantics, i.e. the implication operator ⇒ is interpreted according to the Kleene’s (resp., Lukasiewicz’s) logic.

2 Most of the 3-valued semantics differ in the assignment of the truth value to implications of the form 𝚞 ⇒ 𝚏, which can be either 𝚏 (e.g. Priest, Godel), or 𝚞
(Kleene, Lukasiewicz, Bochvar), or 𝚝 (e.g. Slupecki), or of the form 𝚞⇒ 𝚞, which can be either 𝚞 (e.g. Kleene, Priest) or 𝚝 (e.g. Lukasiewicz, Slupecki, Godel, Bochvar). 
Moreover Bochvar’s logic differs from Slupecki’s logic as it assigns 𝚏 to the implication 𝚝⇒ 𝚞, while all other logics considered here assign the value 𝚞. We refer the 
interested reader to [20] for an overview on different 3-valued logics.

3 Recall that the (primitive) propositional connectives of Lukasiewicz’s logic are ⇒ and the constant 𝚏. Additional connectives are defined in terms of these as 
8

follows: ¬𝐴 =𝑑𝑒𝑓 𝐴 ⇒ 𝚏, 𝐴 ∨𝐵 =𝑑𝑒𝑓 (𝐴 ⇒ 𝐵) ⇒ 𝐵, 𝐴 ∧𝐵 =𝑑𝑒𝑓 ¬(𝐴 ∨𝐵) and 𝐴 ⇔ 𝐵 =𝑑𝑒𝑓 (𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐴).
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Definition 7 ((Revised) CAF semantics). Let Ω = ⟨, , ⟩ be a CAF,  ∈ {𝚌𝚘, 𝚐𝚛, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜} a semantics, and 𝜎 ∈ {𝐾, 𝐿} the under-

lying logic (either Kleene’s or Lukasiewicz’s logic). A set 𝐸 ⊆  is an 𝜎 -extension for Ω if 𝐸 is an  -extension for ⟨, ⟩ and 𝐸 ⊧ 

under the 𝜎 logic.

The set of 𝜎 -extensions for a CAF Ω, where  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, will be denoted by 𝜎(Ω). Note that, given a CAF Ω =⟨, , ⟩, if we consider the corresponding AF Λ = ⟨, ⟩, then the set of complete extensions of Λ that satisfy  does not always 
form a complete meet-semilattice. This is an important difference between CAF and AF, and it also holds for the CAF semantics 
reviewed in the previous section. Roughly speaking, the constraints may break the lattice by marking as unfeasible some extensions. 
As a consequence, even the grounded extension is not guaranteed to exist, as shown below.

Example 7. Consider the CAF Ω = ⟨{𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑐)}, {𝚝⇒ 𝑎 ∧ 𝑏}⟩ derived from the AF Λ of Example 4 (shown in 
Fig. 2) by adding the strong constraint 𝚝⇒ 𝑎 ∧ 𝑏. As shown in Example 4, AF Λ has three complete extensions, 𝐸1 = ∅, 𝐸2 = {𝑎} and 
𝐸3 = {𝑏}, but all extensions do not satisfy the constraint stating that both 𝑎 and 𝑏 must belong to them. Thus Ω has no complete 
extensions, and thus no grounded extension, under both Kleene and Lukasiewicz logics. □

It is worth noting that for any CAF Ω = ⟨, , ⟩, we have that 𝚜𝚝𝐾 (Ω) = 𝚜𝚝𝐿(Ω) and that 𝐾 (Ω) = 𝐿(Ω) for  ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚜}
whenever all constraints 𝜑 ⇒ 𝑣 and 𝑣 ⇒ 𝜑 in  are such that 𝑖) 𝑣 ≠ 𝚞 and 𝑖𝑖) 𝜑 does not contain the implication and equivalence 
operators (i.e., ⇒ and ⇔). The reason is that the stable semantics is 2-valued and does not make use of the undefined truth value; 
moreover, the evaluation of constraints is the same under both logics if the implication and equivalence operators are not used in 
the body or in the head of the constraints (condition 𝑖𝑖)), and the truth value 𝑣 differs from 𝚞 (condition 𝑖)). Intuitively, these two 
conditions exclude the case 𝚞⇒ 𝚞 where the Kleene and Lukasiewicz logics differ (cf. Fig. 4).

4.1. Complexity of credulous and skeptical acceptance

In this section, we investigate the complexity of CAF under Kleene and Lukasiewicz interpretations of the constraints, and in 
particular of the implication operator whose semantics is different in the two logics. We recall that we use 𝐶𝐴𝐾


and 𝑆𝐴𝐾


(resp., 𝐶𝐴𝐿



and 𝑆𝐴𝐿


) to denote the credulous and skeptical acceptance problems under Kleene (resp., Lukasiewicz) logic.

We start with the following lemma that intuitively states that Kleene interpretation can be captured by Lukasiewicz logic.

Lemma 1. For every CAF Ω = ⟨, , ⟩ there exists a CAF Ω′ = ⟨, , ′⟩ such that 𝐾(Ω) = 𝐿(Ω′) and 𝐶 ′ can be derived from  in 
linear time.

Proof. It is sufficient to first rewrite every equivalence 𝑎 ⇔ 𝑏 into (𝑎 ⇒ 𝑏) ∧ (𝑏 ⇒ 𝑎) and then replace every implication 𝑎 ⇒ 𝑏 with 
(¬𝑎 ⇒ 𝑏) ⇒ 𝑏. □

The following lemma states a monotonic property that holds under Kleene logic: if an extension (of an AF underlying a given CAF) 
satisfies a set of constraints, then the set of constraints continues to be satisfied for larger extensions.

Lemma 2. Let Ω = ⟨, , ⟩ be a CAF and 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2. Then, under Kleene logic, 𝐸1 ⊧  implies 𝐸2 ⊧ .

Proof. First, recall that 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and that 𝐸1 = 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2) = 𝐸2. Under Kleene logic every 
constraint 𝜅 can be rewritten in standard form as a disjunction of conjunction of literals, that is, in the form 𝜅 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧𝓁1
𝑛1
) ∨

⋯ ∨ (𝓁𝑘
1 ∧⋯ ∧ 𝓁𝑘

𝑛𝑘
). If 𝐸1 ⊧ 𝜅, it means that there must be 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧ 𝓁𝑖
𝑛𝑖
). Moreover, as 𝐸1 ⊆ 𝐸2 implies that 

𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. □

Observe that the previous lemma does not hold under Lukasiewicz interpretation of the implication operator. As an example, 
consider the CAF Ω = ⟨{𝑎, 𝑏}, {(𝑎, 𝑏), (𝑏, 𝑎)}, {𝑎 ∨ ¬𝑎 ⇒ 𝚞}⟩. The underlying AF has three complete extensions 𝐸0 = ∅, 𝐸1 = {𝑎}
and 𝐸2 = {𝑏}. We have that 𝚌𝚘𝐾 (Ω) = ∅, since the constraint is not satisfied by any extension of the underlying AF. In contrast, 
𝚌𝚘𝐿(Ω) = {𝐸0} since the constraint is satisfied by 𝐸0, but not by 𝐸1 and 𝐸2 even if 𝐸0 ⊆ 𝐸1 and 𝐸0 ⊆ 𝐸2.

Although the presence of constraints in CAF breaks the meet-semilattice of complete extensions, reasoning under the grounded 
semantics remains tractable.

Proposition 1. The complexity of checking whether a CAF admits a grounded extension is in PTIME under both Kleene and Lukasiewicz 
logics.

Proof. Let Ω = ⟨, , ⟩ be a CAF. A set of arguments 𝑆 ⊆  is the grounded extension of Ω if 𝑆 is the grounded extension of ⟨, ⟩
and 𝑆 ⊧ . Computing the grounded extension 𝑆 is in PTIME [48]. Checking whether the grounded extension 𝐸 ⊆  satisfies a given 
finite set of constraints  is also in PTIME (in the size of Ω), under both Kleene and Lukasiewicz logics, from which the statement 
9

follows. □
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Fig. 5. Representation of the AF ⟨′, ′⟩ in the CAF given in the construction of the hardness proof of Theorem 1 concerning the problem 𝐶𝐴𝐿
𝚙𝚛 . The dashed ellipse 

represents the starting AF ⟨, ⟩, with  = {𝑎1 , … , 𝑎𝑛}, from which the construction of the AF ⟨′, ′⟩ is build.

Therefore, since if a grounded extension for a CAF exists then it is unique, computing the credulous (or, equivalently, the skeptical) 
acceptance of an argument under the grounded semantics is still polynomial.

However, the credulous and skeptical acceptance of an argument w.r.t a CAF ⟨, , ⟩ may differ from that of the associated AF ⟨, ⟩, independently of the semantics adopted, as shown in the following example.

Example 8. Continuing from Example 7, there are no arguments in the CAF that are credulously accepted under the complete 
semantics. In contrast, for the AF of Example 4, argument 𝑎 is credulously accepted under the complete and preferred semantics, 
whereas argument 𝑏 is credulously accepted under complete, preferred, stable and semi-stable semantics. Moreover, 𝑏 is skeptically 
accepted under stable and semi-stable semantics, whereas arguments 𝑎 and 𝑐 are not skeptically accepted under any of the semantics 
considered in the paper. □

As discussed earlier, the complete semantics in CAF may admit no extensions. This is analogous to what happens in AF for the 
stable semantics, where the requirement that the extensions must be total may not be satisfied by any set of arguments. Intuitively, the 
problem of non-existence of complete extensions in CAF may arise because the constraints may contradict the extensions prescribed 
by the complete semantics. As an example, consider a CAF whose underlying AF consists of a single (unattacked) argument 𝑎, and 
a (strong) constraint prescribing that the acceptance status of 𝑎 must be false (i.e., 𝑎 ⇒ 𝚏). Clearly, the complete extension of the 
underlying AF (that is, {𝑎}) does not satisfy the constraint, and thus the CAF has no complete extensions. However, we can find 
special cases where it is possible to guarantee the existence of at least one complete extension for CAF. An interesting case is when 
𝚐𝚛(⟨, ⟩) ⊧ , i.e., when the constraints in  do not exclude the existence of the grounded extension. Notably, this condition can be 
checked in polynomial time (cf. Proposition 1) and implies the existence of complete, preferred, and semi-stable extensions, as it holds 
for AF. Moreover, thanks to the result of Lemma 2, the condition 𝚐𝚛(⟨, ⟩) ⊧  also guarantees that (𝑖) under the Kleene’s logic the 
meet-semilattice of complete extensions is preserved, that is 𝚌𝚘𝐾 (⟨, , ⟩) = 𝚌𝚘(⟨, ⟩), whereas (𝑖𝑖) under the Lukasiewicz’s logic 
the meet-semilattice exists, though we have that 𝚌𝚘𝐿(⟨, , ⟩) ⊆ 𝚌𝚘(⟨, ⟩) since extensions of the underlying AF which are larger 
than the grounded one could be filtered out as they may not satisfy the constraints (as illustrated in the example in the paragraph 
after the proof of Lemma 2).

In general, the fact that the grounded extension may not exist for CAFs impacts on the complexity of the skeptical acceptance 
problem under complete semantics (irrespective of the logic considered for interpreting the constraints), which cannot be longer 
decided by simply looking at the grounded extension as for the case of AFs (where an argument is skeptically accepted under complete 
semantics if and only if it is in the grounded extension). Similarly, credulous acceptance under preferred semantics for CAFs under 
Lukasiewicz logic can no longer be decided by checking credulous acceptance under complete semantics (under Kleene logic, the 
complexity of credulous acceptance under preferred semantics remains the same of that of AF thanks to the property stated in 
Lemma 2). In fact, it turns out that the complexity of the above-mentioned problems for CAF increases of one level in the polynomial 
hierarchy w.r.t. that for AF. In all the other cases we can show that the complexity of credulous and skeptical reasoning for CAF and 
AF coincides, as stated in the following theorem which provides tight complexity results for all problems considered.

Theorem 1. For any CAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) 𝑁𝑃 -complete for  = 𝚙𝚛 and 𝜎 = 𝐾 ,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑣) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}, and

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) Except that for the co𝑁𝑃 -hardness result concerning skeptical acceptance under complete semantics (irrespective 
of the logic considered for interpreting the constraints), and the Σ𝑝

2-hardness result concerning the credulous acceptance under 
preferred semantics and Lukasiewicz logic, which are considered below, the other hardness results derive from the fact that they hold 
for any CAFs ⟨, Σ, ⟩ where  = ∅, that is, for AFs. In fact, it has been shown that the complexity of the credulous and skeptical 
acceptance problems for AFs is [45,49,51,56]:

• under complete semantics, NP-complete and in PTIME, respectively;
10

• under stable semantics, NP-complete and coNP-complete, respectively;
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• under preferred semantics, NP-complete and Π𝑝

2-complete, respectively;

• under semi-stable semantics, Σ𝑝

2-complete and Π𝑝

2-complete, respectively.

The lower bound for skeptical acceptance under complete semantics can be proved by reducing 𝑆𝐴𝚜𝚝 for AF to 𝑆𝐴∗
𝚌𝚘 for CAF 

as follows. Given an AF Λ = ⟨, ⟩ we build a CAF Ω = ⟨, , ⟩ where  = {𝑎 ∧ ¬𝑎 ⇒ 𝚏 | 𝑎 ∈}. Observe that the set of stable 
extensions of Λ coincides with the set of complete extensions of Ω, as the constraints force to select only complete extensions not 
containing undefined arguments. Therefore, 𝑆𝐴∗

𝚌𝚘 is coNP-hard. It is worth noting that the same strategy can be used to provide an 
alternative proof for the NP-hardness of 𝐶𝐴∗

𝚌𝚘.

The lower bound for credulous acceptance under preferred semantics and Lukasiewicz logic can be proved by reducing from the 
complement of the Π𝑝

2-complete problem of checking whether a given AF Λ is coherent [49], that is, checking whether 𝚙𝚛(Λ) = 𝚜𝚝(Λ). 
We use 𝖢𝖧 to denote the problem of checking whether a given AF Λ is not coherent. Hence, 𝖢𝖧 is Σ𝑝

2-complete.

Let Λ = ⟨, ⟩. Assume w.l.o.g. that 𝚙𝚛(Λ) ≠ 𝚐𝚛(Λ). We show that 𝖢𝖧(Λ) is true iff 𝐶𝐴𝐿
𝚙𝚛(⟨′, ′, ⟩, 𝜙) is true, where:

• ′ = ∪ {𝑎̄, 𝐶𝑎 ∣ 𝑎 ∈} ∪ {𝜙, 𝜙̄, 𝜓, 𝜓̄};

• ′ = ∪ {(𝑎, 𝑎̄), (𝑎, 𝐶𝑎), (𝑎̄, 𝐶𝑎), (𝐶𝑎, 𝜓̄), (𝑎, 𝜙̄) ∣ 𝑎 ∈} ∪ {(𝜓̄ , 𝜓), (𝜙̄, 𝜙)};

•  = {𝚞⇒ 𝜓 ; 𝜓 ⇒ 𝚞}.

The AF ⟨′, ′⟩ of the above-defined CAF is shown in Fig. 5.

Given Λ′ = ⟨′, ′⟩, there is a one-to-one correspondence between 𝚙𝚛(Λ) and 𝚙𝚛(Λ′). Particularly, it holds that 𝚙𝚛(Λ) = {𝐸′ ∩ ∣
𝐸′ ∈ 𝚙𝚛(Λ′)} and 𝚙𝚛(Λ′) = 𝐸 ∪ {𝑎̄ ∣ 𝑎 ∈ 𝐷𝑒𝑓 (𝐸)} ∪ {𝜓̄ ∣ 𝐸 ∈ 𝚜𝚝(Λ)} ∪ {𝜙 ∣ 𝐸 ∈ 𝚙𝚛(Λ)}.

(⇒) 𝖢𝖧(Λ) is a true instance, that is Λ is not coherent. Thus, there exists at least one preferred extension 𝐸 ∈ 𝚙𝚛(Λ) s.t. 𝐸 ∉
𝚜𝚝(Λ). Thus, by construction there exists 𝐸′ ∈ 𝚙𝚛(Λ′) such that 𝜓 ∈′ ⧵ (𝐸′ ∪ 𝐷𝑒𝑓 (𝐸′)) and 𝜙 ∈ 𝐸′. Observe that 𝐸′ ⊧  and thus 
𝐶𝐴𝐿

𝚙𝚛(⟨′, ′, ⟩, 𝜙) is true.

(⇐) 𝖢𝖧(Λ) is a false instance, that is Λ is coherent. Thus, all preferred extensions 𝐸 ∈ 𝚙𝚛(Λ) are s.t. 𝐸 ∈ 𝚜𝚝(Λ). Thus, by con-

struction, all preferred extensions 𝐸′ ∈ 𝚙𝚛(Λ′) contain both 𝜙 and 𝜓̄ . Thus, any preferred extension 𝐸′ ∈ 𝚙𝚛(Λ′) is such that 𝐸′ ̸⊧ , 
and thus 𝚙𝚛(⟨′, ′, ⟩) = ∅ and consequently 𝐶𝐴𝐿

𝚙𝚛(⟨′, ′, ⟩, 𝜙) is false.

(Membership.) We now provide the membership results for each considered semantics, problem, and logic. Let Ω = ⟨, , ⟩ be a 
CAF, Λ = ⟨, 𝑅⟩ be an AF, and 𝑎 ∈ be the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Ω.

- (𝐶𝐴∗
𝚌𝚘). Recall that a complete extension of an AF is an admissible set that contains all the arguments it defends [47]. Hence, 

a guess-and-check strategy to decide whether 𝑎 belongs to a complete extension of Ω is as follows. First, guess a set 𝑆 ⊆  of 
arguments containing 𝑎 (in PTIME). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 contains all the arguments 
that it defends w.r.t. Λ (in PTIME), and (𝑖𝑖𝑖) 𝑆 ⊧  (in PTIME). Therefore, 𝐶𝐴∗

𝚌𝚘 is in NP.

- (𝑆𝐴∗
𝚌𝚘). Using a strategy similar to that given for 𝐶𝐴∗

𝚌𝚘 , it can be shown that the complementary problem of checking whether 
there exists a complete extension for Ω not containing 𝑎 is in NP. Therefore 𝑆𝐴∗

𝚌𝚘 is in coNP.

- (𝐶𝐴∗
𝚜𝚝). Recall that a stable extension of an AF is a conflict-free set that attacks every other argument in the AF [47]. We say that 

a set 𝑆 attacks an argument 𝑏 if there is 𝑐 ∈ 𝑆 such that 𝑐 attacks 𝑏. A guess-and-check strategy to decide whether 𝑎 belongs to 
a stable extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎 (in polynomial time). Then, check that 
(𝑖) 𝑆 is a conflict-free set for Λ, (𝑖𝑖) 𝑆 attacks each argument in  ⧵𝑆 , and (𝑖𝑖𝑖) 𝑆 ⊧ . Since all these steps can be accomplished 
in PTIME, it follows that 𝐶𝐴∗

𝚜𝚝 is in NP.

- (𝑆𝐴∗
𝚜𝚝). The complementary problem of checking whether there exists a stable extension for Ω not containing 𝑎 is in NP. Therefore 

𝑆𝐴∗
𝚜𝚝 is in coNP.

- (𝐶𝐴𝐿
𝚙𝚛). A preferred extension of an AF is a maximal (w.r.t. ⊆) admissible set for it [47]. A guess-and-check strategy for deciding 

whether 𝑎 belongs to a preferred extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎 (in polynomial 
time). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 ⊧  (in PTIME), and (𝑖𝑖𝑖) there is no admissible set 𝑆′ for 
Λ such that 𝑆′ ⊃ 𝑆 and 𝑆′ ⊧ . It can be shown that (𝑖𝑖𝑖) is in coNP. Indeed, a guess-and-check strategy for the complementary 
problem of deciding whether there is an admissible set 𝑆′ for Λ such that 𝑆′ ⊃ 𝑆 and 𝑆′ ⊧  is as follows: guess a set 𝑆′ ⊆ 

such that 𝑆′ ⊃ 𝑆 , and check that 𝑆′ is an admissible set for Λ and 𝑆′ ⊧  (in PTIME). Therefore, 𝐶𝐴𝐿
𝚙𝚛 is in Σ𝑝

2.

- (𝐶𝐴𝐾
𝚙𝚛). Recalling that a preferred extension of an AF is a ⊆-maximal complete extension [47], a guess-and-check strategy for 

deciding whether 𝑎 belongs to a preferred extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎. Then, 
check that (𝑖) 𝑆 is a complete extension for Λ (in PTIME), and (𝑖𝑖) 𝑆 ⊧  (in PTIME). The fact that it suffices to check that 𝑆
is a complete (rather than a preferred) extension for Λ follows from the result of Lemma 2, which entails that also ⊆-maximal 
complete extensions (w.r.t. the guessed one) satisfy the set constraints. Therefore, 𝐶𝐴𝐾

𝚙𝚛 is in NP.

- (𝑆𝐴𝐿
𝚙𝚛). The complementary problem of checking whether there exists a preferred extension for Ω not containing 𝑎 is in Σ𝑝

2. 
Therefore 𝑆𝐴𝐿

𝚙𝚛 is in Π𝑝

2.

- (𝐶𝐴∗
𝚜𝚜𝚝). A semi-stable extension of an AF is an admissible set 𝑆 such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) is maximal (w.r.t. ⊆) [51]. A guess-and-

check strategy for deciding whether 𝑎 belongs to a semi-stable extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments 
containing 𝑎 (in polynomial time). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 ⊧  (in PTIME), and (𝑖𝑖𝑖)
11

there is no admissible set 𝑆′ for Λ such that 𝑆′ ∪ 𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪ 𝐷𝑒𝑓 (𝑆) and 𝑆′ ⊧ . It can be shown that (𝑖𝑖𝑖) is in coNP. 
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Fig. 6. AF ⟨,⟩ underlying WAF Υ of Example 9 (and the PAF of Example 12).

A guess-and-check strategy for the complementary problem of deciding whether there is an admissible set 𝑆′ for Λ such that 
𝑆′ ∪𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪𝐷𝑒𝑓 (𝑆) and 𝑆′ ⊧  is as follows: guess a set 𝑆′ ⊆  such that 𝑆′ ∪𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪𝐷𝑒𝑓 (𝑆), and check that 
𝑆′ is an admissible set for Λ and 𝑆′ ⊧  (in PTIME). Therefore, 𝐶𝐴∗

𝚜𝚜𝚝 is in Σ𝑝

2.

- (𝑆𝐴∗
𝚜𝚜𝚝). The complementary problem of checking whether there exists a semi-stable extension for Ω not containing 𝑎 is in Σ𝑝

2. 
Therefore 𝑆𝐴∗

𝚜𝚜𝚝 is in Π𝑝

2. □

5. Weak constrained AF

In this section, we present a generalization of CAF with weak constraints. Differently from the strong constraints previously 
discussed, weak constraints are propositional formulae that should be satisfied if possible. Specifically, weak constraints are logical 
formulae having the same syntax as strong constraints, but they do not necessarily all have to be satisfied, and we give preference to 
extensions that better satisfy them (called best extensions) according to a given criterion.

Definition 8. (Weak constrained AF) A Weak constrained Argumentation Framework (WAF) is a tuple Δ = ⟨, , , ⟩, where ⟨, , ⟩
is a CAF and  is a set of weak constraints built from .

The semantics of a WAF is defined by considering two possible criteria for selecting the preferable extensions w.r.t. weak 
constraints—only weak constraints are considered when selecting the preferable extensions since strong constraints must be all 
satisfied. The two criteria considered for assessing to which extent an extension satisfies a set of weak constraints are: (i) maxi-

mal set criterion, considering as preferable (or “best”) extensions the ones that satisfy a maximal set of weak constraints, and (ii) 
maximum-cardinality criterion, considering as preferable (or “optimal”) extensions the ones that satisfy a maximal number of weak 
constraints. Clearly, the selection of preferable extensions makes sense only for semantics admitting multiple extensions, that is, 
complete, preferred, stable, and semi-stable semantics. Thus, in the following, whenever we consider a generic semantics  , we refer 
to  ∈ {𝚌𝚘,𝚙𝚛,𝚜𝚝,𝚜𝚜𝚝}.

In the next subsections, after formally defining the meaning of a WAF under the maximal-set and maximum-cardinality semantics, 
we investigate the complexity of credulous and skeptical reasoning in the new framework.

5.1. Maximal-set semantics

The semantics of a WAF using the maximal-set criterion is defined as follows.

Definition 9 (Maximal-Set Semantics). Given a WAF Υ = ⟨, , , ⟩, an 𝜎 -extension 𝐸 for ⟨, , ⟩ is a maximal-set 𝜎 -extension 
(𝚖𝚜𝜎 -extension) for Υ if, let 𝐸 ⊆  be the set of weak constraints that are satisfied by 𝐸 (that is, 𝐸 ⊧ 𝐸 ), there is no 𝜎 -extension 
𝐹 for ⟨, , ⟩ and 𝐹 ⊆  such that 𝐹 ⊧ 𝐹 and 𝐸 ⊂ 𝐹 .

Given a semantics  and a logic 𝜎 ∈ {𝐾, 𝐿} for the interpretation of the constraints, 𝚖𝚜-𝜎 denotes the maximal-set version of 
𝜎 (e.g., 𝚖𝚜-𝚌𝚘𝐾 denotes the 𝚖𝚜 complete semantics under Kleene interpretation).

Example 9. Consider the WAF Υ = ⟨, , , ⟩, where ⟨ = {𝑎, 𝑏, 𝑐, 𝑑},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑐, 𝑑), (𝑑, 𝑐)}⟩ is the AF shown in Fig. 6, 
 = ∅, and  = {𝑤1 = 𝑐 ⇒ 𝚏, 𝑤2 = 𝑎 ∨ ¬𝑎 ⇒ 𝚞}. Under Lukasiewicz logic 𝑤1 and 𝑤2 state that, preferably, 𝑐 should be false, and 𝑎
should be undefined, respectively. Under Kleene logic, 𝑤1 states that 𝑐 should be preferably false, whereas 𝑤2 becomes useless as it 
is never satisfied (recall that it coincides with 𝑎 ∨ ¬𝑎 ⇒ 𝚏).

Υ has 9 complete extensions: 𝐸0 = {}, 𝐸1 = {𝑎}, 𝐸2 = {𝑏}, 𝐸3 = {𝑐}, 𝐸4 = {𝑑}, 𝐸5 = {𝑎, 𝑐}, 𝐸6 = {𝑎, 𝑑}, 𝐸7 = {𝑏, 𝑐} and 
𝐸8 = {𝑏, 𝑑}. In particular, 𝐸0 is the grounded extension, whereas 𝐸5, 𝐸6, 𝐸7, 𝐸8 are preferred, stable, and semi-stable extensions 
of ⟨, , ⟩. These are also extensions of AF ⟨, ⟩, since  = ∅.

Regarding the satisfaction of weak constraints, first observe that argument 𝑐 is false in 𝐸4, 𝐸6 and 𝐸8, whereas argument 𝑎
is undefined in 𝐸0, 𝐸3 and 𝐸4. Thus, since under Lukasiewicz logic 𝑤1 states that 𝑐 should be preferably false, and 𝑤2 states 𝑎
should be preferably undefined, under Lukasiewicz interpretation we have that 𝐸0 ⊧ {𝑤2}, 𝐸3 ⊧ {𝑤2}, 𝐸4 ⊧ {𝑤1, 𝑤2}, 𝐸6 ⊧ {𝑤1}, 
and 𝐸8 ⊧ {𝑤1}, whereas the other complete extensions do not satisfy any constraint. Therefore, the maximal-set preferred (stable, 
semi-stable) extensions are 𝐸6 and 𝐸8 (i.e. 𝚖𝚜-𝚙𝚛𝐿(Υ) = 𝚖𝚜-𝚜𝚝𝐿(Υ) = 𝚖𝚜-𝚜𝚜𝐿(Υ) = {𝐸6, 𝐸8}), whereas there is only one maximal-set 
complete extension, which is 𝐸4 (i.e. 𝚖𝚜-𝚌𝚘𝐿(Υ) = {𝐸4}).

Considering Kleene interpretation, recalling that 𝑐 is false in 𝐸4, 𝐸6 and 𝐸8, and that 𝑤1 states that 𝑐 should be preferably 
false (whereas 𝑤2 is useless in this case), we have that 𝚖𝚜-𝚙𝚛𝐾 (Υ) = 𝚖𝚜-𝚜𝚝𝐾 (Υ) = 𝚖𝚜-𝚜𝚜𝐾 (Υ) = {𝐸6, 𝐸8}, whereas 𝚖𝚜-𝚌𝚘𝐿(Υ) =
12

{𝐸4, 𝐸6, 𝐸8}. □
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Table 1

Complexity of 𝐶𝐴𝜎


under complete (𝚌𝚘), stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝) semantics. For any complexity class 𝐶 , we use 
𝐶 -c to denote 𝐶 -complete, and 𝐶 to denote Σ𝑝

2-hard and in 𝐶 . All the results except those for AF are new.

Framework

AF CAF NCAF (S)WAF WAF LWAF SWAF NWAF

 𝐶𝐴 𝐶𝐴𝐾


𝐶𝐴𝐿


𝐶𝐴∗


𝐶𝐴𝐾
𝚖𝚜 𝐶𝐴𝐿

𝚖𝚜 𝐶𝐴𝐾
𝚖𝚌 𝐶𝐴𝐿

𝚖𝚌 𝐶𝐴𝐾


𝐶𝐴𝐿


𝐶𝐴𝐾
𝚖𝚌 𝐶𝐴𝐿

𝚖𝚌 𝐶𝐴∗
𝚖𝚜

S
e
m

a
n
ti

cs 𝚌𝚘 NP-c NP-c NP-c NP-c Σ𝑝

2-c Σ𝑝

2-c Θ𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Σ𝑝

2-c

𝚜𝚝 NP-c NP-c NP-c NP-c Σ𝑝

2-c Σ𝑝

2-c Θ𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Σ𝑝

2-c

𝚙𝚛 NP-c NP-c Σ𝑝

2-c NP-c Σ𝑝

2-c Σ𝑝

3 Θ𝑝

2-c Θ𝑝

3 Δ𝑝

2-c Δ𝑝

3 Δ𝑝

2-c Δ𝑝

3 Σ𝑝

2-c

𝚜𝚜𝚝 Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

3-c Θ𝑝

3 Θ𝑝

3 Σ𝑝

2-c Δ𝑝

3 Δ𝑝

3 Δ𝑝

3 Σ𝑝

2-c

Intuitively, given an 𝜎 -extension, checking satisfaction of a maximal-set of weak constraints means ensuring that no other 𝜎 -

extension is better according to that criterion. This is an additional source of complexity that makes, in most cases, credulous and 
skeptical reasoning in WAFs one level higher in the polynomial-time hierarchy than CAFs.

Theorem 2. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿, and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

5.2. Maximum-cardinality semantics

Maximum-cardinality semantics for WAFs prescribes as preferable extensions those satisfying the highest number of weak con-

straints. This is similar to the semantics of weak constraints in DLV [9] where, in addition, each constraint has assigned a weight.

Definition 10 (Maximum-Cardinality Semantics). Given a WAF Υ = ⟨, , , ⟩, an 𝜎 -extension 𝐸 for ⟨, , ⟩ is a maximum-

cardinality 𝜎 -extension (𝚖𝚌𝜎 -extension) for Υ if, let 𝐸 ⊆  be the set of weak constraints in  that are satisfied by 𝐸, there is 
no 𝜎 -extension 𝐹 for ⟨, , ⟩ and 𝐹 ⊆  such that 𝐹 ⊧ 𝐹 and |𝐸 | < |𝐹 |.

The next theorem provides complexity results for credulous and skeptical reasoning in WAF with maximum-cardinality semantics 
under Kleene and Lukasiewicz interpretation of constraints.

Theorem 3. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Θ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

The complexity results stated so far, as well as those that will be given in the next sections, are summarized in Tables 1 and 2. 
It turns out that, under standard complexity assumptions, computing credulous and skeptical acceptance in WAFs under maximum-

cardinality semantics is easier than using maximal-set semantics. Roughly speaking, this follows from the fact that a binary search 
strategy can be used for deciding whether the cardinality of a set of constraints satisfied by an 𝜎 -extension containing a given 
argument is maximum.

6. Stratified constraints in WAF

In this section, we explore the impact of considering a form of stratification over the set of constraints. We first consider WAF 
where weak constraints define a partial order, and then focus on linearly ordered sets of constraints. Similarly to other contexts such 
as logic programming, the concept of stratification allows defining classes of WAF with different complexity and expressivity. In 
particular, after formally defining the syntax and semantics of stratified WAF, we investigate their complexity under the maximal-set 
and maximum-cardinality interpretation of the weak constraints, showing that the complexity does not impact on the maximal-set 
13

interpretation while it increases with the maximum-cardinality interpretation. In general, for both interpretations, the stratification 
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Table 2

Complexity of 𝑆𝐴𝜎


under complete (𝚌𝚘), stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝) semantics. For any com-

plexity class 𝐶 , we use 𝐶 -c to denote 𝐶 -complete, and 𝐶 to denote Π𝑝

2-hard and in 𝐶 . All the results except those for 
AF are new.

Framework

AF CAF NCAF (S)WAF WAF LWAF SWAF NWAF

 𝑆𝐴 𝑆𝐴∗


𝑆𝐴∗


𝑆𝐴𝐾
𝚖𝚜 𝑆𝐴𝐿

𝚖𝚜 𝑆𝐴∗
𝚖𝚌 𝑆𝐴𝐾


𝑆𝐴𝐿


𝑆𝐴∗

𝚖𝚌 𝑆𝐴∗
𝚖𝚜

S
e
m

a
n
ti

cs 𝚌𝚘 P coNP-c coNP-c Π𝑝

2-c Π𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Π𝑝

2-c

𝚜𝚝 coNP-c coNP-c coNP-c Π𝑝

2-c Π𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Π𝑝

2-c

𝚙𝚛 Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

3-c Θ𝑝

3 Π𝑝

2-c Δ𝑝

3 Δ𝑝

3 Π𝑝

2-c

𝚜𝚜𝚝 Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

3-c Θ𝑝

3 Π𝑝

2-c Δ𝑝

3 Δ𝑝

3 Π𝑝

2-c

approach provides a more flexible way to express different strata of constraints. Finally, we focus on a particular form of stratified 
WAFs where every stratum is a singleton, providing tighter complexity bounds under Kleene logic.

The partial order on the set  of weak constraints is defined by partitioning  into strata 1, … , 𝑛 (with 𝑛 ≥ 1) so that weak 
constraints in a stratum 𝑖 have higher priority than those in a stratum 𝑗 > 𝑖.

Definition 11. (Stratified WAF) A Stratified Weak constrained Argumentation Framework (SWAF) is a tuple ⟨𝐴, , , ⟩ where ⟨𝐴, , ⟩
is a CAF and  is a list of sets of weak constraints (1, … , 𝑛) built from .

Note that whenever 𝑛 = 1 we have a unique stratum and, then, SWAFs coincide with standard WAFs, which in turn implies that 
SWAFs are at least as hard as WAFs from a computational standpoint.

Regarding the semantics of a SWAF ⟨𝐴, , , ⟩, the underlying idea is that weak constraints are applied one stratum at a time. 
Therefore, given a set 𝑆 of 𝜎 -extensions of ⟨𝐴, , ⟩, the best/optimal 𝜎 -extensions are obtained by first computing the set 𝑆1 ⊆ 𝑆

which are best/optimal solutions w.r.t. 1 , then the set 𝑆2 ⊆ 𝑆1 of 𝜎 -extensions which are best/optimal solutions w.r.t. 2 is 
selected, and so on.

Definition 12 (SWAF Semantics). Let Υ = ⟨, , , (1, … , 𝑛)⟩ be a SWAF and 𝜎 a semantics under logic 𝜎. An 𝜎 -extension 𝐸
for ⟨, , ⟩ is an 𝚖𝚜∕𝚖𝚌𝜎 -extension for Υ if:

• 𝐸 is an 𝚖𝚜∕𝚖𝚌𝜎 -extension for ⟨, , , 1⟩, and

• if 𝑛 > 1 there is no 𝚖𝚜∕𝚖𝚌𝜎 -extension 𝐸′ for ⟨, , , 1⟩ such that 𝐸′ is a 𝚖𝚜∕𝚖𝚌𝜎 -extension for ⟨, , , (2, ..., 𝑛) and 
𝐸 is not.

Thus, to determine the set of 𝚖𝚜∕𝚖𝚌𝜎 -extensions 𝑆𝑛 for ⟨, , , (1, … , 𝑛)⟩, we first compute the set 𝑆0 of 𝜎 -extensions for ⟨, , ⟩ and next, for each stratum 𝑖 ∈ [1, 𝑛], we compute the set of 𝚖𝚜∕𝚖𝚌𝜎 -extensions 𝑆𝑖 from 𝑆𝑖−1, by discarding the extensions 
which to do not satisfy a maximal set/maximal number of constraints in 𝑖.

Example 10. Consider the SWAF derived from the AF Λ of Example 1 by adding the following list of sets of weak constraints 
({𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏}, {𝚝 ⇒ 𝑎}, {𝚝 ⇒ 𝑏}, {𝚝 ⇒ 𝑐}). Since each stratum contains only one weak constraint, maximal-set and maximum-

cardinality semantics give the same result. The weak constraints are applied one (set) at a time to discard extensions. After applying 
the first constraint the extension containing 𝑎, 𝑏 and 𝑐 is discarded. At the second step only extensions containing 𝑎 are selected from 
the ones selected at the first step. At the third step only the extension containing 𝑎 and 𝑏 is selected. Thus, the best/optimal extension 
is the one containing exactly 𝑎 and 𝑏.

Note that, assuming that weak constraints are not stratified, we would have the three extensions {𝑎, 𝑏}, {𝑎, 𝑐} and {𝑏, 𝑐} under 
both maximal-set and maximum-cardinality preferred and stable semantics. □

The next two theorems state the complexity for SWAF under the maximal-set and maximum-cardinality interpretation of weak 
constraints, respectively.

Theorem 4. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.
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Theorem 5. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem:
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• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Δ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

In light of Theorem 4 and Theorem 5, it follows that the introduction of multiple layers of weak constraints under maximal-

set semantics does not increase the computational complexity, thought it provides a more general and flexible approach to express 
constraints. In contrast, in the case of maximal-cardinality semantics, introducing multiple layers of weak constraints generally 
increases the complexity w.r.t. a single layer of constraints.

A particular form of SWAF are the ones used in Example 10, where every stratum is a singleton, meaning that weak constraints 
define a total order.

Definition 13 (LWAF). A SWAF ⟨, , , (1, ..., 𝑛)⟩ is said to be linearly ordered if every 𝑖 (1 ≤ 𝑖 ≤ 𝑛) contains only one weak 
constraint.

Observe that for linearly ordered SWAFs, that we denote by LWAF, 𝐶𝐴𝜎
𝚖𝚜 = 𝐶𝐴𝜎

𝚖𝚌 and 𝑆𝐴𝜎
𝚖𝚜 = 𝑆𝐴𝜎

𝚖𝚌 . Thus, for this class of 
constrained AFs, we simply use the notations 𝐶𝐴𝜎


and 𝑆𝐴𝜎


to denote the credulous and skeptical acceptance problems, respectively.

Theorem 6. For any LWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-complete for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-complete for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(iii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Thus, limiting the number of weak constraints in each layer does not result in reducing the complexity bounds under Lukasiewicz’s 
logic, i.e., SWAF and LWAF have the same complexity bounds.

Finally, it is worth noting that extending CAF by stratifying the constraints does not make sense as all constraints must be satisfied.

7. CAF and WAF with denial constraints

In several contexts (e.g., database, logic programming, inconsistent knowledge management) constraints are expressed by denial 
constraints. In this section, we investigate credulous and skeptical acceptance when constraints are expressed by negative constraints 
only. In the following, we use the acronym NCAF (resp., NWAF) to denote a CAF (resp., WAF) where all constraints are defined as 
denials.

Example 11. The WAF of Example 3 is an NWAF, since the constraints in  are denials and those in  can be equivalently written 
as the denials ¬𝑎 ⇒ 𝚏, ¬𝑏 ⇒ 𝚏, ¬𝑐 ⇒ 𝚏, and ¬𝑑 ⇒ 𝚏. Moreover, if  = ∅ then we obtain an NCAF. □

The following lemma states that for NWAF (and thus NCAF) the semantics of denial constraints under Kleene and Lukasiewicz 
logics coincide.

Lemma 3. For any NWAF Υ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, it holds that 𝐾 (Υ) = 𝐿(Υ).

As a consequence, the result of Lemma 2 also holds for NWAF and NCAF under both Lukasiewicz and Kleene semantics as stated 
below.

Lemma 4. Let Υ = ⟨, , , ⟩ be a NWAF, 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2, and  ′ ⊆  . Then, under both Kleene and Lukasiewicz 
logics, 𝐸1 ⊧  ∪ ′ implies 𝐸2 ⊧  ∪ ′.

The following theorem shows that, if only denial constraints are used, the complexity of the credulous acceptance problem under 
preferred semantics does not increase for NCAF w.r.t. that for AF, which is different from what happens for (general) CAF (see 
15

Theorem 1). Moreover, the complexity of the skeptical acceptance problem for NCAF does not change w.r.t that for CAF.
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Theorem 7. For any NCAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Finally, as stated next, the introduction of weak denial constraints increases the complexity of one level in the polynomial hierarchy 
w.r.t. that of NCAF, for credulous acceptance under complete, stable and preferred semantics, as well as for skeptical acceptance under 
complete and stable semantics, independently of the chosen logic.

Theorem 8. For any NWAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜 is Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

• 𝑆𝐴𝜎
𝚖𝚜 is Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

Overall, the use of denials makes the two logics equally expressive regardless of the interpretation of constraints as strong or weak 
constraints. Moreover, under semi-stable semantics, employing only denials (i.e., considering NWAF) results in a lower complexity 
of credulous acceptance compared to the case of general constraints (WAF) under Lukasiewicz logic. In fact, the complexity of NCAF 
and NWAF coincide under semi-stable semantics.

8. Encoding preferences through WAF

Several extensions of Dung’s framework for handling preferences over arguments have been proposed [10,11,13,14,27,44,90]. In 
this section, after recalling the syntax of preference-based AF (denoted by PAF), we first propose a new semantics for PAF based on 
a well-known semantics for Answer-Set Programming (ASP) with preferences, called Answer Set Optimization (ASO)] [34], and then 
show that such PAFs can be encoded in WAF.

Definition 14. A Preference-based Argumentation Framework (PAF) is a triple ⟨, , ≻⟩ such that ⟨, ⟩ is an AF and ≻ is a strict 
partial order (i.e. an irreflexive, asymmetric and transitive relation) over , called preference relation.

For arguments 𝑎 and 𝑏, 𝑎 ≻ 𝑏 means that 𝑎 is better than 𝑏. As discussed in Section 9, a “best extensions” semantics approach 
for PAF has been proposed in [14,71], where classical argumentation semantics are used to obtain extensions of the underlying AF ⟨, ⟩ and then the preference relation ≻ is used to obtain a preference relation ⊒ over such extensions, so that the best extensions 
w.r.t. ⊒ are eventually selected. With the same spirit of selecting the best extensions by following an induced relation from the user-

defined preferences, the Answer Set Optimization (ASO) approach has been proposed [34], whose semantics is based on the degree to 
which preferences are satisfied. Thus, we propose an intuitive PAF semantics that extends the ASO approach to deal with the fact that 
argumentation semantics are 3-valued. Then, we show that any PAF under this approach of handling preferences can be equivalently 
rewritten (in terms of extensions) to a WAF under maximal-set semantics.

For any PAF ⟨, , ≻⟩ under ASO semantics, the set of preferences ≻ determine a preference ordering on the set of  -extensions 
of the underlying AF ⟨, ⟩, for any semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. First, we need to identify the case where the preference is 
satisfied w.r.t. a particular extension. To this end, given a PAF ⟨, , ≻⟩, an  -extension 𝐸 ∈ (⟨, ⟩), and a preference 𝑎 ≻ 𝑏, 
then 𝑎 ≻ 𝑏 is said to be satisfied w.r.t. 𝐸 iff 𝑎 ∈ 𝐸 or 𝑏 ∈ 𝐷𝑒𝑓 (𝐸). Thus, it is possible to define the satisfaction degree of 𝑎 ≻ 𝑏

in 𝐸 by setting 𝑑𝐸 (𝑎 ≻ 𝑏) = 1 if 𝑎 ∈ 𝐸 or 𝑏 ∈ 𝐷𝑒𝑓 (𝐸), 𝑑𝐸 (𝑎 ≻ 𝑏) = 0 otherwise. Let ⟨, , {𝑎1 ≻ 𝑏1, … , 𝑎𝑛 ≻ 𝑏𝑛}⟩ be a PAF and 
𝐸 ∈ (⟨, ⟩) be an  -extension for ⟨, ⟩ under semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. We say that 𝐸 induces a satisfaction vector 
𝐷𝐸 = ⟨𝑑𝐸 (𝑎1 ≻ 𝑏1), … , 𝑑𝐸 (𝑎𝑛 ≻ 𝑏𝑛)⟩, where the position of preferences in the list is determined according to a predefined order (e.g. 
the lexicographic order or the order according to which they are listed).

We illustrate the ASO semantics for preferences in the following example.

Example 12. Consider the PAF ⟨ = {𝑎, 𝑏, 𝑐, 𝑑},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑐, 𝑑), (𝑑, 𝑐)} {𝑎 ≻ 𝑏, 𝑏 ≻ 𝑐}⟩ where the AF Λ = ⟨, ⟩ is shown in 
Fig. 6. Under preferred and stable semantics, for the AF ⟨, ⟩ there are 4 extensions: 𝐸1 = {𝑎, 𝑐}, 𝐸2 = {𝑎, 𝑑}, 𝐸3 = {𝑏, 𝑐}, and 
𝐸4 = {𝑏, 𝑑}. Comparing the four extensions with respect to the two preferences, we get the following satisfaction vectors:

• 𝐷𝐸1
= ⟨1, 0⟩, as 𝑑𝐸1

(𝑎 ≻ 𝑏) = 1 (since 𝑎 ∈ 𝐸1), and 𝑑𝐸1
(𝑏 ≻ 𝑐) = 0 (since neither 𝑏 ∈ 𝐸1 nor 𝑐 ∈ 𝐷𝑒𝑓 (𝐸1));

• 𝐷𝐸2
= ⟨1, 1⟩, as 𝑑𝐸2

(𝑎 ≻ 𝑏) = 1 (since 𝑎 ∈ 𝐸2) and 𝑑𝐸2
(𝑏 ≻ 𝑐) = 1 (since 𝑐 ∈ 𝐷𝑒𝑓 (𝐸2));

• 𝐷𝐸3
= ⟨0, 1⟩, as 𝑑𝐸3

(𝑎 ≻ 𝑏) = 0 (since neither 𝑎 ∈ 𝐸3 nor 𝑏 ∈ 𝐷𝑒𝑓 (𝐸3)) and 𝑑𝐸3
(𝑏 ≻ 𝑐) = 1 (since 𝑏 ∈ 𝐸3); and

• 𝐷𝐸4
= ⟨0, 1⟩, as 𝑑𝐸4

(𝑎 ≻ 𝑏) = 0 (since neither 𝑎 ∈ 𝐸4 nor 𝑏 ∈ 𝐷𝑒𝑓 (𝐸4)) and 𝑑𝐸4
(𝑏 ≻ 𝑐) = 1 (since 𝑏 ∈ 𝐸4). □
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We extend the preorder on satisfaction degrees to preorders on satisfaction vectors and extensions as follows.
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Fig. 7. AF ⟨,⟩ underlying PAF Δ of Example 14.

Definition 15 (PAF Semantics). Let Δ = ⟨, , {𝑎1 ≻ 𝑏1, … , 𝑎𝑛 ≻ 𝑏𝑛}⟩ be a PAF, and 𝐸, 𝐹 ∈ (⟨, ⟩) be two  -extensions for ⟨, ⟩
under semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. We say that 𝐸 ⊒ 𝐹 iff 𝑑𝐸 (𝑎𝑖 ≻ 𝑏𝑖) ≥ 𝑑𝐹 (𝑎𝑖 ≻ 𝑏𝑖) for each 𝑖 ∈ [1, 𝑛], and write 𝐸 ⊐ 𝐹 iff 𝐸 ⊒ 𝐹 and 
𝐹 ⋣ 𝐸. Moreover, the best  -extensions of Δ (denoted as (Δ)) are the extensions 𝐸 ∈ 𝜎(⟨, ⟩) such that there is no 𝐹 ∈ 𝜎(⟨, ⟩)
with 𝐹 ⊐ 𝐸.

Example 13. Continuing with Example 12, comparing the 𝐷𝐸𝑖
-vectors associated with extensions 𝐸𝑖, with 𝑖 ∈ [1..4], we have the 𝐸2

is the best one since 𝐸2 ⊐ 𝐸1, 𝐸2 ⊐ 𝐸3, and 𝐸2 ⊐ 𝐸4. □

Example 14. Consider the PAF Δ = ⟨ = {𝑎, 𝑏, 𝑐},  = {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ ∧ 𝑥 ≠ 𝑦}, {(𝑎 ≻ 𝑏), (𝑏 ≻ 𝑐), (𝑎 ≻ 𝑐)}⟩. The preferred extensions 
for the underlying AF Λ = ⟨, ⟩ (shown in Fig. 7), obtained from Δ by ignoring the preferences, are 𝚙𝚛(Λ) = {𝐸1 = {𝑎}, 𝐸2 = {𝑏}, 
𝐸3 = {𝑐}}. The satisfaction vector of 𝐸1 , 𝐸2 and 𝐸3 is 𝐷𝐸1

= ⟨1, 1, 1⟩, 𝐷𝐸2
= ⟨0, 1, 1⟩, and 𝐷𝐸3

= ⟨1, 0, 0⟩, respectively. As 𝐸1 ⊐ 𝐸2
and 𝐸1 ⊐ 𝐸3, we have that 𝐸1 is the only best preferred extension of Δ. □

Theorem 9. For any PAF Δ = ⟨, , ≻⟩ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜}, there exists a WAF ΥΔ (derivable from Δ in linear time) s.t. 
(Δ) = 𝚖𝚜-∗(ΥΔ).

Proof. Consider the case of Kleene logic. Given a PAF Δ = ⟨, , ≻⟩, we denote by ΥΔ = ⟨, , ∅, Δ⟩ the WAF derived from Δ by 
replacing every preference 𝑎 ≻ 𝑏 with the constraint 𝜔𝑎,𝑏 ∶ 𝚝⇒ (𝑏 ⇒ 𝑎). Thus, observe that, for any -extension 𝐸 ∈ (⟨, ⟩) we 
have that 𝐸 ⊧ 𝜔𝑎,𝑏 iff 𝑑𝐸 (𝑎 ≻ 𝑏) = 1.

(⇒) Reasoning by contradiction, assume that there exists 𝐸 ∈ (Λ), with Λ = ⟨, ⟩, such that 𝐸 ∈ (Δ) ⧵ 𝚖𝚜-(ΥΔ). So there 
must exist 𝐹 ∈ (Λ) ∩ 𝚖𝚜-(ΥΔ) s.t. 𝐹 ⊧ 𝐹 ⊆ Δ, 𝐸 ⊧ 𝐸 ⊆ Δ, and 𝐹 ⊃ 𝐸 . Thus, the satisfaction vectors for 𝐸 and 𝐹 , 
respectively 𝐷𝐸 = ⟨𝑑1

𝐸
, … , 𝑑𝑛

𝐸
⟩ and 𝐷𝐹 = ⟨𝑑1

𝐹
, … , 𝑑𝑛

𝐹
⟩, are such that:

• ∀ 𝑤𝑖 ∈𝐸 , 𝑑𝑖
𝐸
= 𝑑𝑖

𝐹
= 1;

• ∀ 𝑤𝑖 ∈ ⧵𝐸 , 𝑑𝑖
𝐸
= 0;

• ∀ 𝑤𝑗 ∈ ⧵𝐹 , 𝑑𝑗

𝐸
= 𝑑

𝑗

𝐹
= 0;

• ∀ 𝑤𝑗 ∈𝐹 ⧵𝐸 , 𝑑𝑗

𝐸
= 0 and 𝑑𝑗

𝐹
= 1.

Thus 𝐹 ⊐ 𝐸, that is an absurd.

(⇐) Reasoning by contradiction, assume that there exists 𝐸 ∈ (Λ) s.t. 𝐸 ∈ 𝚖𝚜-(ΥΔ) ⧵(Δ). So there must exist 𝐹 ∈ (Λ) ∩(Δ)
s.t. 𝐹 ⊐ 𝐸. This implies that, 𝐹 ⊧ 𝐹 = {𝜔𝑎,𝑏 ∈Δ ∣ 𝑑𝐹 (𝑎 ≻ 𝑏) = 1} and 𝐸 ⊧ 𝐸 = {𝜔𝑎,𝑏 ∈Δ ∣ 𝑑𝐸 (𝑎 ≻ 𝑏) = 1}. Thus, 𝐸 ⊂ 𝐹 and 
thus 𝐹 ⊐ 𝐸, that is an absurd.

As by Lemma 1 any constraint under Kleene logic can be equivalently rewritten into a new one under Lukasiewicz logic, the result 
also follows under Lukasiewicz logic. □

Example 15. Continuing with the previous example, the WAF derived from Δ is ΥΔ = ⟨, , ∅, Δ = {𝑤1, 𝑤2, 𝑤3}⟩ where:

𝑤1 ∶ 𝚝⇒ (𝑏 ⇒ 𝑎), 𝑤2 ∶ 𝚝⇒ (𝑐 ⇒ 𝑏), and 𝑤3 ∶ 𝚝⇒ (𝚌⇒ 𝚊).
We have that 𝐸1 ⊧ 𝑤1, 𝑤2, 𝑤3, 𝐸2 ⊧ 𝑤2, 𝑤3, while 𝐸3 ⊧ 𝑤1. Thus, 𝐸1 is the only best preferred extension of Δ and the only 𝚖𝚜-𝚙𝚛

extension of ΥΔ. □

9. Related work

We start our discussion of related work by observing that an important difference between the semantics of CAF introduced 
in (Coste-Marquis et al. (2006)) [41] and our work concerns the meaning of constraints. Indeed, constraints in [41] (under Kleene 
logic) are imposed on the admissibility of sets of arguments (i.e., over admissible sets) that are at the basis of  -extensions, with 
 ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜}. As a consequence, a drawback of this approach is that  -extensions of a given CAF are no longer guaranteed 
to be  -extensions of the underlying AF, that is, we may have 𝐸 ∈ (⟨, , ⟩), but 𝐸 ∉ (⟨, ⟩). Differently, the semantics 
proposed in our work under Kleene (as well as under Lukasiewicz) logic prescribes  -extensions that are  -extensions of underlying 
AF.

Besides being related to the proposals for CAF in [41,17], our work is also related to the approach presented in [29] that provides a 
method for generating non-empty conflict-free extensions for CAFs. Constraints have been also used in the context of dynamic AFs to 
refer to the enforcement of some change [46]. In this context, extension enforcement aims at modifying an AF to ensure that a given 
set of arguments becomes (part of) an extension for the chosen semantics [23,42,93,81]. This is different from our approach where 
integrity constrains are used to discard unfeasible solutions (extensions), without enforcing that a new set of arguments becomes an 
17
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Weak constraints allow for selecting “best” or “optimal” extensions satisfying some conditions on arguments, if possible. This can 
be viewed as expressing a kind of preference over the set of extensions. Dung’s framework has been extended in several ways for 
allowing preferences over arguments [11,70,78]. Two main approaches have been proposed to handle preferences in argumentation, 
where a Preference-based Argumentation Framework (PAF) is defined as a triple ⟨, , ≻⟩ (cf. Definition 14). The first approach 
considers AF-based semantics and consists in first defining a defeat relation 𝑖 that combines attacks in  and preferences in ≻, 
and then applying the usual semantics on the AF ⟨, 𝑖⟩. Here 𝑖 (with 𝑖 ∈ [1, 4]) denotes one of the four mappings proposed in 
the literature [11,14,71]. However, in some cases these semantics fail to capture the expected meaning as, in some cases, extensions 
of the resulting PAF could not be conflict-free w.r.t. the original AF. We point out that for these PAF semantics the complexity of 
acceptance problems does not increase as the mapping to AF (i.e., building 𝑖) is polynomial time. Anyway, it is clear that any PAF ⟨, , ≻⟩ under this approach can be encoded into a WAF ⟨, 𝑖, ∅, ∅⟩ under any semantics.

The second approach to handle preferences relies on a “best extensions” semantics for PAF [14,71]. In particular, given a PAF ⟨, , ≻⟩, classical argumentation semantics are used to obtain extensions of the underlying AF ⟨, ⟩, and then the preference 
relation ≻ is used to obtain a preference relation ⊒ over such extensions, so that the best extensions w.r.t. ⊒ are eventually selected. 
Clearly, ⊒ is not trivial for multiple-status semantics only (for the grounded semantics, its extension is trivially the best one). Even if 
not excluded from the complexity standpoint, as the semantics of this approach is to compare pairs of extensions to filter-out those 
that are not best, it is not straightforward to encode a PAF into a WAF sharing the same underlying AF and having the same set of 
extensions.

Preferences can be also expressed in value-based AFs [25,50], where each argument is associated with a numeric value, and a set of 
possible orders (preferences) among the values is defined. In [52] weights are associated with attacks, and new semantics extending 
the classical ones on the basis of a given numerical threshold are proposed. [43] extends [52] by considering other aggregation 
functions over weights apart from sum. Except for weighted solutions under grounded semantics (that prescribes more than one 
weighted solution), the complexity bounds of credulous and skeptical reasoning in the above-considered frameworks are lower or 
equal than those of WAFs, which suggests that WAFs are more expressive and can be used to model those frameworks. In this 
regard, we have proposed a novel (3-valued) PAF semantics based on the (2-valued) ASO semantics for answer set programs [34]. 
Differently from [34], w.l.o.g. we have not considered preferences that are conditioned by a boolean conjunctive formula in the 
body, e.g. 𝑎 ≻ 𝑏 ← 𝑐 ∧ ¬𝑑. In fact, these preferences can be encoded by imposing and additional condition concerning the body, that 
is 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐷𝑒𝑓 (𝐸) in the case of the preference in the previous example. ASO preferences can be also generalized to express 
meta-preferences specifying a sequence of pairwise disjoint sets of preferences. In the same spirit, a SWAF can be used to encode those 
preferences as done in the specific case of a single set of preferences. Finally, preferences in ASO can be also modeled as preferences 
of the form 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘 (e.g. 𝑎 ≻ 𝑏 ≻ 𝑐) where 𝐶𝑖s are boolean formulas built using arguments and standard connectives ∧, ∨, 
and ¬. However, to simplify the presentation and the translation to WAF, we assumed w.l.o.g. that preferences 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘

are rewritten as 𝐶𝑖 ≻ 𝐶𝑗 such that 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ [1, 𝑘].
An interesting extension of Dung’s framework with epistemic constraints called Epistemic Argumentation Framework (EAF) has 

been recently proposed [89]. An epistemic constraint is a propositional formula over labeled arguments ({𝐢𝐧(𝑎), 𝐨𝐮𝐭(𝑎), 𝐮𝐧𝐝𝐞𝐜(𝑎) ∣
𝑎 is an argument})4 extended with the modal operators 𝐊 and 𝐌. Intuitively, 𝐊 𝜙 (resp. 𝐌𝜙) states that the considered agent believes 
that 𝜙 is always (resp. possibly) true. The semantics of an EAF is given by the set of so-called  -epistemic labelling sets. Intuitively, an 
 -epistemic labelling set is a collection of  -labellings that reflects the belief of an agent. More in detail, every  -epistemic labelling

set consists of  -labellings of the underlying AF and it is a maximal set of  -labellings that satisfy the epistemic constraint. Epistemic 
constraints without modal operators play the same role of strong constraints, that is, they play the same role of strong constraints in 
CAF. In Appendix D, we formally show that any EAF without modal operators (or with restricted modal operators), that is an AF with 
constraints defined over the alphabet of arguments’ labels [21], can be rewritten into an equivalent CAF with the semantics defined 
in this paper.

Constraints having the form of explicit acceptance conditions over arguments have been firstly explored in the Abstract Dialectical 
Framework (ADF) [36], whose semantics can be captured by the (monotonic three-valued) possibilistic logic [67]. In particular, 
the semantics of an ADF 𝐷 relies on a characteristic operator, namely Γ𝐷 , which takes as an input a three-valued interpretation 
𝜈 and returns an interpretation by considering all possible two-valued completions of 𝜈.5 To explain the connection between ADF 
and CAF, let us illustrate how the CAF Ω = ⟨, , ⟩ introduced in Section 1, where ⟨, ⟩ is the AF shown in Fig. 1(a) and 
 = {𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏} is the considered strong constraint, can be modeled through an ADF of the form 𝐷 = ⟨𝑆 = {𝑎, 𝑏, 𝑐}, 𝐿 =
{(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑆 ∧ 𝑥 ≠ 𝑦}, 𝐶 = {𝐶𝑎 = 𝑎 ∧ ¬(𝑏 ∧ 𝑐), 𝐶𝑏 = 𝑏 ∧ ¬(𝑎 ∧ 𝑐), 𝐶𝑐 = 𝑐 ∧ ¬(𝑎 ∧ 𝑏)}⟩ whose set of complete interpretations coincides 
with the set of complete extensions of Ω. The fact that CAF can be modeled by ADF, and in particular that credulous and skeptical 
reasoning in CAF can be reduced to ADF is backed by the computational complexity of the two frameworks [92]. In fact, ADF is 
at least as expressive as CAF under complete, preferred and stable semantics, and strictly more expressive (one level higher in the 
polynomial hierarchy) for credulous acceptance under complete semantics (which is Σ𝑝

2-complete for ADF) and skeptical acceptance 
under preferred semantics (Π𝑝

3-complete for ADF). As for the semi-stable semantics, to the best of our knowledge, the complexity of 
semi-stable semantics for ADF has not been studied yet. Although a reduction from CAF to ADF is not ruled out by our complexity 
analysis, providing such a mapping means translating CAF constraints which work at the global level of a set of extensions to (local) 
acceptance conditions that are specifically defined for arguments—this deserves more investigation, and is left for future work.

4 𝐢𝐧, 𝐨𝐮𝐭 , and 𝐮𝐧𝐝𝐞𝐜 are synonyms of 𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎 and 𝚞𝚗𝚍𝚎𝚏, respectively.
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5 The interested reader can find an overview of ADF’s syntax and semantics in Appendix E.
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However, it is worth mentioning that under both complete and stable semantics, ADF is not as expressive as WAF from a complexity 
standpoint. In fact, skeptical acceptance under complete semantics is coNP-complete in ADF [33] while it is Π𝑝

2-complete for WAF 
(cf. Theorem 2). Moreover, under stable semantics, both credulous and skeptical acceptance problems in ADF are one lever lower 
in the polynomial hierarchy w.r.t. WAF (the same happens for CAF). This suggests that WAF cannot be encoded through ADF under 
complete and stable semantics. Also, a reduction from ADF to WAF is not ruled out by our complexity analysis, though in this case 
an approach to translate (local) acceptance condition over arguments to global constraints needs to be devised. Finally, analogously 
to what is done in this paper concerning the exploration of less expressive subclasses within WAF and CAF (e.g. denial constraints), 
similar analyses have been conducted within ADF. For instance, the subclass called bipolar ADFs (BADFs) has been shown to exhibit 
complexity comparable to that of classical AFs, as is it possible to avoid considering all the possible two-valued completions through 
the application of Kleene logic [24]. Exploring the connection between subclasses of WAF/CAF and ADF is another possible direction 
for future work.

As mentioned earlier, with the aim of allowing for a more straightforward and compact encoding of knowledge w.r.t. AF, several 
frameworks extending AF have been proposed, such as the argumentation framework with collective attacks (SETAF) [80,62,54,55]. 
SETAF generalizes AF by allowing for collective attacks, i.e., attacks from non-empty sets of arguments to a single argument. Intu-

itively, a collective attack from set a {𝑎, 𝑏} to argument 𝑐 means that neither 𝑎 nor 𝑏 is strong enough to defeat 𝑐 by themselves. To 
illustrate the semantics of SETAF, let us consider again the situation of Example 1, which can be modeled by the CAF Ω = ⟨, , ⟩, 
where ⟨, ⟩ is the AF shown in Fig. 1(a) and  = {𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏} is a strong constraint. This situation can be also modeled by 
the SETAF ⟨{𝑎, 𝑏, 𝑐}, {({𝑎, 𝑏}, 𝑐), ({𝑎, 𝑐}, 𝑏), ({𝑏, 𝑐}, 𝑎)}⟩, whose set of preferred extensions is {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. It is worth noting 
that, the notion of collective attacks can also be represented in ADF by using proper acceptance conditions [75,85,54]. As for ADF, 
SETAF is not as expressive as WAF from the complexity viewpoint, suggesting that WAF cannot be encoded through SETAF.

Finally, concerning the hierarchy of constraints in SWAF, we point out that there is a connection with the preferred subtheory 
approach introduced in [32], where a default theory is a tuple (𝑇1, ..., 𝑇𝑛) such that each 𝑇𝑖 is a set of classical first order formulas 
with the property that information in 𝑇𝑖 is more reliable than that in 𝑇𝑗 if 𝑖 < 𝑗. This is analogous to the way strata in SWAFs are 
defined, as weak constraints in a stratum 𝑖 have higher priority than those in a stratum 𝑗 > 𝑖.

We believe that the findings of this study may also apply to other well-known related AI fields, such as logic programming with 
3-valued semantics [87,40,4], computing repairs and consistent answers over inconsistent data [15,61,76,77] (see e.g. [31,57,65] for 
the relationship between logic programming and consistent query answering), and integration of different AI formalisms with (strong 
and weak) constraints and preferences [35,38,83].

10. Conclusions and future work

We have introduced a general argumentation framework where both strong and weak constraints can be easily expressed. Our 
complexity analysis shows how the several forms of constrains (including restricted forms, e.g., denials) impact on the complexity 
of credulous and skeptical reasoning. It turns out that constraints, especially weak ones, generally increase the expressivity of AFs. 
In fact, WAFs allow us to model optimization problems such as, for instance, Min Coloring and Maximum Satisfiability, where some 
kind of preferences (e.g., use the minimum number of colors) are expressed on solutions. This is not possible for AFs/CAFs whose 
expressivity is lower than that of WAFs (AFs/CAFs can capture simpler problems such as 𝑘-coloring and SAT).

We envisage implementations of the proposed WAF semantics by exploiting ASP-based systems and analogies with logic programs 
with weak constraints [37,66] (the relationship between the semantics of some frameworks extending AF and that of logic programs 
has been investigated in [4]). For WAFs, DLV system [9] could be used for computing maximum-cardinality stable semantics.

Future work will be also devoted to considering more general forms of constraints, not only using variables ranging on the sets of 
arguments, but also constraints allowing to express conditions on aggregates [8] (e.g., at least 𝑛 arguments from a given set 𝑆 should 
be accepted/rejected). We believe that the basic idea of adding weak constraints could be also applicable for structured argumentation 
formalisms [28,64], which is another direction for future research.

Finally, given the inherent nature of argumentation and the typical high computational complexity of most of the reasoning 
tasks, there have been several efforts toward the investigation of incremental techniques that use AF solutions (e.g., extensions, 
skeptical acceptance) at time 𝑡 to recompute updated solutions at time 𝑡 +1 after that an update (e.g., adding/ removing an attack) is 
performed [2,46]. These approaches have been extended to argumentation frameworks more general than AFs [3,1]. Following this 
line of research, we plan to investigate incremental techniques for recomputing CAF and WAF semantics after performing updates 
consisting of changes to the AF component or to the sets of strong and weak constraints.
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Appendix A. Proofs

In this appendix we provide the proofs not already given in the core of the paper.

To ease readability, we restate the results and organize them in sections by following the order used in the core of the paper.

Since some proofs use results from disjunctive logic programs (DLPs) and logic programs with weak constraints, in Appendix B we 
recall DLPs and needed results, whereas in Appendix C we introduce logic programs with weak constraints, and show their relationship 
with WAFs and DLPs. In Appendix D, we show that any EAF without modal operators can be rewritten into an equivalent CAF with 
the semantics defined in the paper. Finally, in Appendix E we recall the Abstract Dialectical Framework [36], which is discussed in 
the related work.

For a better understanding of some concepts used in the appendix, we introduce some lemmas and additional examples.

A.1. WAF with maximal-set semantics

We start by introducing three technical lemmas whose results will be used in the following.

Lemma 5. Let Υ = ⟨, , , ⟩ be a WAF, and let 𝐸 be a set of arguments. Deciding whether 𝐸 ∈ 𝚖𝚜-𝚌𝚘∗(Υ) (or 𝐸 ∈ 𝚖𝚜-𝚜𝚝∗(Υ)) is in 
𝑐𝑜𝑁𝑃 .

Proof. Consider the complementary problem: decide whether 𝐸 is not a maximal-set complete (resp., stable) extension for Υ (under 
Lukasiewicz or Kleene logic). A guess-and-check strategy to decide this problem is as follows. Guess a set 𝑆 ⊆  and check that (i) 𝑆
is a complete (resp., stable) extension for ⟨, , ⟩ and (ii) the set  ′ = {𝑤 ∈ | 𝐸 ⊧ 𝑤} is such that  ′ ⊂  ′′ = {𝑤 ∈ | 𝑆 ⊧ 𝑤}
(that is,  ′ is not maximal). The complexity of checking (i) is polynomial for both complete and stable semantics, since both checking 
whether 𝐸 is a complete (resp., stable) extension for ⟨, ⟩ and checking whether 𝐸 ⊧  can be accomplished in polynomial time. 
Checking (ii) is in PTIME too. Therefore the complementary problem is in 𝑁𝑃 , from which the statement follows. □

The following lemma states a result analogous to that of Lemma 2 but for the case of WAF (instead of CAF).

Lemma 6. Let Υ = ⟨, , , ⟩ be a WAF and 𝐸1, 𝐸2 ∈ 𝚌𝚘𝐾 (⟨, , ⟩) with 𝐸1 ⊆ 𝐸2. Then, for any 𝜔 ∈ under Kleene logic, 𝐸1 ⊧ 𝜔

implies 𝐸2 ⊧ 𝜔.

Proof. Firstly recall that, given two complete extensions 𝐸1 and 𝐸2 for Ω = ⟨, , ⟩, 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2). 
Under Kleene logic every weak constraint 𝜔 can be rewritten in standard form as a disjunction of conjunction of literals of the form 
𝜔 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧ 𝓁1
𝑛1
) ∨⋯ ∨ (𝓁𝑘

1 ∧⋯ ∧ 𝓁𝑘
𝑛𝑘
). If 𝐸1 ⊧ 𝜔, it means that there must be a value 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧ 𝓁𝑖
𝑛𝑖
). 

Moreover, as 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. □

Lemma 7. Let Υ = ⟨, , , ⟩ be a WAF, and let 𝐸 be a set of arguments. Deciding whether 𝐸 ∈ 𝚖𝚜-𝚙𝚛𝐾 (Υ) is in 𝑐𝑜𝑁𝑃 .

Proof. Consider the complementary problem, that is, deciding whether 𝐸 is not a maximal-set preferred extension for Υ under Kleene 
logic. This problem can be decided as follows. Guess a set 𝑆 ⊆  and check that (i) 𝑆 is a complete extension for ⟨, , ⟩ and (ii) 
 ′ = {𝑤 ∈  | 𝐸 ⊧ 𝑤} ⊂  ′′ = {𝑤 ∈  | 𝑆 ⊧ 𝑤}. The fact that it suffices to check that 𝑆 is a complete (rather than preferred) 
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extension for ⟨, , ⟩ comes from the results of Lemma 2 and Lemma 6. Both (i) and (ii) can be decided in PTIME, as checking 
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whether a set of arguments is a complete extension for ⟨, ⟩ is in P and this holds even if we additionally check satisfaction of the 
sets of constraints. Thus, this problem is in 𝑁𝑃 . Consequently, deciding whether 𝐸 is a maximal-set preferred extension for Υ under 
Kleene logic is in 𝑐𝑜𝑁𝑃 . □

Theorem 2. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿, and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Membership.) The membership results come from the general case of SWAF (cf. Theorem 4) as any WAF is a SWAF with a 
single stratum of constraints.

(Hardness.) All the lower bound results, except those for 𝐶𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝, 𝑆𝐴𝐿

𝚖𝚜−𝚙𝚛, and 𝑆𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝 derive from the fact that they hold for WAF ⟨, , , ⟩ where  and  are sets of denial constraints, that is for NWAF (cf. Theorem 8).

The hardness results for 𝐶𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝, 𝑆𝐴𝐿

𝚖𝚜−𝚙𝚛, and 𝑆𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝 are obtained by mapping disjunvtive datalog programs under partial 

stable model semantics [59] to WAFs under complete semantics and Lukasiewicz logic.

It is important to recall that for disjunctive datalog programs under partial stable model semantics the complexity of credulous 
and skeptical acceptance are as follows [59]:

• 𝐶𝐴 is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚙𝚜,𝚜𝚝,𝚖𝚜}, and (𝑖𝑖𝑖) Σ𝑝

3-complete for  = 𝚕𝚜.

• 𝑆𝐴 is: (𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚜,𝚜𝚝}, and (𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚖𝚜,𝚕𝚜}.

where 𝚙𝚜, 𝚜𝚝, 𝚖𝚜 and 𝚕𝚜 denote the semantics partial stable, (total) stable, maximal stable, and least-undefined stable, respectively;

Since every disjunctive datalog programs under partial (resp., total, maximal, least-undefined) stable model semantics can be 
mapped into an equivalent WAF under complete (resp. stable, preferred, semi-stable) semantics and Lukasiewicz logic, the hardness 
results follow. We show how disjunctive logic programs can be mapped to normal logic programs with constraints and then to WAFs 
in Appendix C. The partial stable semantics for normal and disjunctive logic programs are recalled in Appendix B. □

A.2. WAF with maximum-cardinality semantic

We first introduce a technical lemma which will be used in the proof of Theorem 3.

Lemma 8. Given a WAF Υ = ⟨, , , ⟩, and a natural number 𝑘 ≤ ||, deciding whether there exists a complete (resp., stable, preferred, 
semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘 constraints of  is in

• 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under Lukasiewicz logic.

• 𝑁𝑃 (resp., 𝑁𝑃 , 𝑁𝑃 , Σ𝑝

2) under Kleene logic.

The result still holds if it is required that the extension 𝐸 contains a given argument 𝑎 ∈, that is for the problem of deciding whether there 
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘 constraints of  .

Proof. First, consider Lukasiewicz logic. Guess a set 𝐸 ⊆  and check that (𝑖) 𝐸 is a complete (resp., stable, preferred, semi-stable) 
extension in PTIME (resp., PTIME, 𝑁𝑃 , 𝑁𝑃 ) [45,49,51], and (𝑖𝑖) 𝐸 satisfies at least 𝑘 constraints of  in PTIME. Thus, the considered 
problem is in 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under complete (resp., stable, preferred, semi-stable) semantics.

As for the Kleene logic, the difference with respect to the above-described procedure is that in the case of the preferred semantics 
the result of Lemma 6 can be used. Thus, at step 𝑖), it suffices to check that 𝐸 is a complete extension rather than preferred, since if 
there is a complete extension satisfying at least 𝑘 constraints, then there is a preferred extension satisfying at least 𝑘 constraints.

Finally, consider the case where we additionally require that the extension 𝐸 contains an argument 𝑎 ∈. The results continue 
to hold in such a case, since what is said earlier continues to hold if we start by guessing a set 𝐸 ⊆  containing 𝑎. □

Theorem 3. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Θ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and
21

(iv) Σ𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.
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• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Membership.) In the following, we use 𝑛 to denote the number of constraints, i.e. 𝑛 = ||.
• (𝐶𝐴∗

𝚖𝚌-𝚌𝚘, 𝐶𝐴∗
𝚖𝚌-𝚜𝚝, 𝑆𝐴∗

𝚖𝚌-𝚌𝚘 and 𝑆𝐴∗
𝚖𝚌-𝚜𝚝).

We prove the results only for 𝐶𝐴∗
𝚖𝚌 , as for each semantics  ∈ {𝚌𝚘,𝚜𝚝} the complexity of the complementary problem of 

𝑆𝐴∗
𝚖𝚌 , that is checking whether there exists a maximum-cardinality  -extension not containing 𝑎, can be shown by reasoning 

analogously to the case of 𝐶𝐴𝚖𝚌 .

We first call an NP oracle to check that ⟨, , ⟩ admits a complete (resp., stable) extension containing 𝑎 (this corresponds to 
checking credulous acceptance for a CAF, which is in NP for complete and stable semantics). Then, we perform a binary search 
in [0, 𝑛] to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the extensions of ⟨, , ⟩. In particular, in the 
binary search we use an NP oracle to decide whether there exist a complete (resp., stable) extension of ⟨, , ⟩ satisfying at 
least 𝑘 constraints (Lemma 8), where 𝑘 is the middle value in the search interval. The number of calls to the oracle is bounded 
by 𝑂(𝑙𝑜𝑔 𝑛), as at the first step the search space is [0, 𝑛] and we call the oracle with 𝑘1 = 𝑛∕2, at the second step the search space 
is one half of the previous step (either [0, 𝑘1 − 1] or [𝑘1, 𝑛], with 𝑘2 = (𝑘1 − 1)∕2 or 𝑘2 = |(𝑚 − 𝑘1)∕2), and so on. Finally, given 
the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the extensions of ⟨, , ⟩, we use another call to an NP oracle to 
decide whether there exists a complete (resp., stable) extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints 
(as stated in Lemma 8, checking this is still in NP). Therefore, deciding whether there is a maximum-cardinality complete (resp. 
stable) extension containing 𝑎 is in Θ𝑝

2.

• (𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛). Using the result of Lemma 8, the Θ𝑝

2 algorithm for 𝐶𝐴𝐾
𝚖𝚌-𝚌𝚘 also applies to the case of preferred semantics under Kleene 

logic.

• (𝑆𝐴𝐾
𝚖𝚌-𝚙𝚛).

Consider the complementary problem of 𝑆𝐴𝐾
𝚖𝚌-𝚙𝚛, that is checking whether there exists a maximum-cardinality 𝚙𝚛-extension not

containing 𝑎. We first show that this problem is in Θ𝑝

3.

First, call an NP oracle to check that ⟨, , ⟩ admits a preferred extension (this has the same complexity of checking credulous 
acceptance for a CAF, which is in NP for preferred semantics under Kleene logic). Then, we perform a binary search in [0, 𝑛] to 
find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the preferred extensions of ⟨, , ⟩. In particular, in the 
binary search we use an NP oracle to decide whether there exist a preferred extension of ⟨, , ⟩ satisfying at least 𝑘 constraints 
under Kleene logic (Lemma 8), where 𝑘 is the middle value in the search interval. Finally, given the maximum number 𝑘𝑚𝑎𝑥 of 
constraints that are satisfied by the extensions of ⟨, , ⟩, we use a call to a Σ𝑝

2 oracle to decide whether there exist a preferred 
extension of ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints. Observe that deciding whether there exist a 
preferred extension of ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘 constraints is in Σ𝑝

2. In fact, differently from the case of 
Lemma 8, where we require that argument 𝑎 is contained in the extension, here the result of Lemma 6 cannot be used. To show 
the membership is in Σ𝑝

2, it suffices to consider the following procedure: guess a set 𝐸 ⊆  not containing 𝑎 and check that (𝑖) 𝐸

is a preferred extension (in 𝑁𝑃 ), and (𝑖𝑖) 𝐸 satisfies at least 𝑘 constraints of  (in PTIME). Therefore, the considered problem 
is Σ𝑝

2 under preferred semantics and, thus, deciding whether there is a maximum-cardinality preferred extension not containing 
𝑎 is in Θ𝑝

3. Since Θ𝑝

3 is closed under complement, the result follows.

• (𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛 and 𝑆𝐴𝐿

𝚖𝚌-𝚙𝚛).

We prove the results only for 𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛, as the complexity of the complementary problem of 𝑆𝐴𝐿

𝚖𝚌-𝚙𝚛, that is checking whether 
there exists a maximum-cardinality 𝚙𝚛-extension not containing 𝑎, can be shown reasoning analogously to the case of 𝐶𝐴𝚖𝚌-𝚙𝚛.

We first call a Σ𝑝

2 oracle to check that ⟨, , ⟩ admits a preferred extension containing 𝑎 (this corresponds to checking credulous 
acceptance for a CAF, which is in Σ𝑝

2 for preferred semantics under Lukasiewicz logic). Then, we perform a binary search in [0, 𝑛]
to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the preferred extensions of ⟨, , ⟩. In the binary search, 
we can use a Σ𝑝

2 oracle to decide whether there exist a preferred extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘
constraints (Lemma 8). The number of calls to the oracle is bounded by 𝑂(𝑙𝑜𝑔 𝑛). Finally, we use another call to Σ𝑝

2 oracle to 
decide whether there exist a preferred extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints (as stated in 
Lemma 8, checking this is still in Σ𝑝

2). Therefore, deciding whether there is a maximum-cardinality preferred extension containing 
𝑎 is in Θ𝑝

3.

• (𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝 and 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝). We prove the results only for 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝, as the complexity of the complementary problem of 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝, 
that is checking whether there exists a maximum-cardinality  -extension not containing 𝑎, can be shown reasoning analogously 
to 𝐶𝐴∗

𝚖𝚌-𝚜𝚜𝚝.

The proof for 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝 is analogous to that for 𝐶𝐴𝐿

𝚖𝚌-𝚙𝚛. We first call an Σ𝑝

2 oracle to check that ⟨, , ⟩ admits a semi-stable 
extension containing 𝑎 (this corresponds to checking credulous acceptance for a CAF, which is in Σ𝑝

2 for semi-stable semantics 
under Lukasiewicz logic). Then, we perform a binary search in [0, 𝑛] to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are 
satisfied by the semi-stable extensions of ⟨, , ⟩. In the binary search, we can use a Σ𝑝

2 oracle to decide whether there exist a 
semi-stable extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘 constraints (Lemma 8). The number of calls to the oracle 
22

is bounded by 𝑂(𝑙𝑜𝑔 𝑛). Finally, we use another call to Σ𝑝

2 oracle to decide whether there exist a semi-stable extension of ⟨, , ⟩
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containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints (Lemma 8). Therefore, deciding whether there is a maximum-cardinality 
semi-stable extension containing 𝑎 is in Θ𝑝

3.

(Hardness.) We now prove the hardness results.

- (𝐶𝐴∗
𝚖𝚌−𝚜𝚝 and 𝑆𝐴∗

𝚖𝚌−𝚜𝚝). The hardness results derive from analogous results for logic programs with weighted weak constraints, 
stating that the complexity credulous and skepical reasoning in logic programs with weighted weak constraints is Θ𝑝

2 -complete 
[37] (Theorem 21). In fact, since every logic program 𝐿𝑃 under total stable model semantics can be translated into an AF Λ, 
where the set of stable models of 𝐿𝑃 (restricted to positive literals) coincide with the set of stable extensions of Λ [40], a logic 
program with strong and weak constraints (𝐿𝑃 , , ) can be translated into an equivalent WAF ⟨, , ′,  ′⟩, from which the 
result follows.

- (𝐶𝐴∗
𝚖𝚌−𝚌𝚘 and 𝑆𝐴∗

𝚖𝚌−𝚌𝚘). The hardness result follows from the Θ𝑝

2-complete problem 𝐶𝐴∗
𝚖𝚌−𝚜𝚝 for WAF. Given a WAF ⟨, , , ⟩, 

𝐸 ∈ 𝚖𝚌-𝚜𝚝∗(Υ) iff 𝐸 ∈ 𝚖𝚌-𝚌𝚘∗(Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, ⟩ and ′′ = {𝚝⇒ 𝑎 ∨¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴∗
𝚖𝚌-𝚜𝚝(Υ, 𝑔) is true 

iff 𝐶𝐴∗
𝚖𝚌-𝚌𝚘(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚌𝚘(Υ
′, 𝑔) is true.

- (𝐶𝐴𝐾
𝚖𝚌−𝚙𝚛). The hardness result follows from the Θ𝑝

2-complete problem 𝐶𝐴𝐾
𝚖𝚌−𝚜𝚝 for WAF. Given a WAF ⟨, , , ⟩, 𝐸 ∈

𝚖𝚌-𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚖𝚌-𝚙𝚛𝐾 (Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, ⟩ and ′′ = {𝚝⇒ 𝑎 ∨ ¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴𝐾
𝚖𝚌-𝚜𝚝(Υ, 𝑔) is true iff 

𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛(Υ

′, 𝑔) is true.

- (𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛, 𝐶𝐴∗

𝚖𝚌-𝚜𝚜𝚝, 𝑆𝐴∗
𝚖𝚌-𝚙𝚛 and 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝). The hardness result derives from the fact that they hold for any WAF ⟨, , , ⟩
where  = ∅, that is for CAF (cf. Theorem 1). □

A.3. WAF with stratified weak constraints

In this section, we provide the proofs of Theorem 4 and Theorem 5.

Theorem 4. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Hardness.) The lower bound results derive from the fact that they hold for any SWAFs ⟨, , , (1 , … , 𝑛)⟩ where 𝑛 = 1, 
that is, for WAFs (cf Theorem 2).

(Membership.) We now provide the membership results for each considered semantics and problem. Let Υ = ⟨, , , (1, … , 𝑛)⟩
be a SWAF and 𝑎 ∈ the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Υ.

• (𝐶𝐴∗
𝚖𝚜-𝚌𝚘 and 𝐶𝐴∗

𝚖𝚜-𝚜𝚝). We first prove that deciding whether 𝐸 is a maximal-set complete (resp., stable) extension for Υ (under 
Lukasiewicz or Kleene logic) is in coNP. A guess-and-check strategy to decide the complementary problem is as follows. Guess a 
set 𝑆 ⊆  and an index 𝑗 ∈ [1, 𝑛] and check that (i) 𝑆 is a complete (resp., stable) extension for ⟨, , ⟩ and (ii) for each 𝑖 ∈ [1, 𝑗]
the sets  ′

𝑖
= {𝑤 ∈𝑖 | 𝐸 ⊧ 𝑤} and  ′′

𝑖
= {𝑤 ∈𝑖 | 𝑆 ⊧ 𝑤} are such that  ′

𝑘
= ′′

𝑘
with 𝑘 ∈ [1, 𝑗 − 1] and  ′

𝑗
⊂  ′′

𝑗
(that is, 

 ′
𝑗

is not maximal w.r.t the 𝑗-th stratum). The complexity of checking (i) is polynomial for both complete and stable semantics, 
since checking whether 𝐸 is a complete (resp., stable) extension for ⟨, ⟩ and checking whether 𝐸 ⊧  can be accomplished 
in polynomial time. Checking (ii) is in PTIME too. Therefore, the problem of deciding whether 𝐸 is not a maximal-set complete 
(resp., stable) extension is in NP, and thus the complementary problem is in coNP.

Given this, to prove that 𝐶𝐴∗
𝚖𝚜-𝚌𝚘 (resp., 𝐶𝐴∗

𝚖𝚜-𝚜𝚝) is in Σ𝑝

2, it suffices to consider the following guess-and-check strategy: guess 
a set 𝐸 ⊆  of arguments containing 𝑎 and check that 𝐸 is a maximal-set complete (resp. stable) extension for Υ by using the 
above-shown coNP oracle. Thus 𝐶𝐴∗

𝚖𝚜-𝚌𝚘 (resp. 𝐶𝐴∗
𝚖𝚜-𝚜𝚝) is in Σ𝑝

2.

• (𝐶𝐴𝐾
𝚖𝚜-𝚙𝚛 and 𝑆𝐴𝐾

𝚖𝚜-𝚙𝚛). We show that, given a SWAF Υ = ⟨, , , (1, … , 𝑛)⟩, it is the case that 𝐸 ∈ 𝚖𝚜-𝚙𝚛𝐾 (Υ) iff 𝐸 ∈
𝚖𝚜-𝚌𝚘𝐾 (Υ′) where Υ′ = ⟨, , , ( ′

1, 1, 2, … , 𝑛)⟩ with  ′
1 = {𝚝 ⇒ 𝑥 ∣ 𝑥 ∈ }. First recall that, by Lemma 2 we have 

that 𝚙𝚛𝐾 (⟨, , ⟩) ⊆ 𝚌𝚘𝐾 (⟨, , ⟩). Then, since the constraints in  ′
1 select from the extensions in 𝚌𝚘𝐾 (⟨, , ⟩) those 

that are maximal w.r.t. ⊆ (i.e.,  ′
1 has the effect filtering out the preferred extensions), we have that 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) =
𝚙𝚛𝐾 (⟨, , ⟩). Then the result of applying (1, … 𝑛) over 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) is the same as that of applying (1, … 𝑛)
to 𝚙𝚛𝐾 (⟨, , ⟩), from which the result follows.

• (𝐶𝐴𝐾
𝚖𝚜-𝚜𝚜𝚝 and 𝑆𝐴𝐾

𝚖𝚜-𝚜𝚜𝚝). The strategy of the proof is similar to that of the previous item, except that a different set  ′
1 of weak 

constraints is used to simulate the semi-stable semantics. In particular, we show that, given a SWAF Υ = ⟨, , , (1, … , 𝑛)⟩, 
it holds that 𝐸 ∈ 𝚖𝚜-𝚜𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚖𝚜-𝚌𝚘𝐾 (Υ′) where Υ′ = ⟨, , , ( ′

1, 1, 2, … , 𝑛)⟩ with  ′
1 = {𝚝 ⇒ 𝑥 ∨ ¬𝑥 ∣ 𝑥 ∈
23

}. Recall that, by Lemma 2, we have that 𝚜𝚜𝚝𝐾 (⟨, , ⟩) ⊆ 𝚌𝚘𝐾 (⟨, , ⟩). Then, since  ′
1 selects from 𝚌𝚘𝐾 (⟨, , ⟩)
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the extensions that are maximal w.r.t. the presence of arguments whose status is either true or false (or equivalently that are 
minimal w.r.t. undecided arguments) we have that 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) = 𝚜𝚜𝚝𝐾 (⟨, , ⟩). Therefore, applying (1, … 𝑛)
over 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) is the same as applying (1, … 𝑛) to 𝚜𝚜𝚝𝐾 (⟨, , ⟩), from which the result follows.

• (𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛 and 𝐶𝐴𝐿

𝚖𝚜-𝚜𝚜𝚝). We first prove that deciding whether 𝐸 is a maximal-set preferred (resp., semi-stable) extension for Υ
under Lukasiewicz logic is in Π𝑝

2. A guess-and-check strategy to decide the complementary problem is as follows. Guess a set 
𝑆 ⊆  and an index 𝑗 ∈ [1, 𝑛] and check that (i) 𝑆 is a preferred (resp., semi-stable) extension for ⟨, , ⟩ and (ii) for each 
𝑖 ∈ [1, 𝑗] the sets  ′

𝑖
= {𝑤 ∈𝑖 | 𝐸 ⊧ 𝑤} and  ′′

𝑖
= {𝑤 ∈𝑖 | 𝑆 ⊧ 𝑤} are such that  ′

𝑘
= ′′

𝑘
with 𝑘 ∈ [1, 𝑗 − 1] and  ′

𝑗
⊂  ′′

𝑗

(that is,  ′
𝑗

is not maximal w.r.t the 𝑗-th stratum). The complexity of checking (i) is coNP for both preferred and semi-stable 
semantics, since checking whether 𝐸 is a preferred (resp., semi-stable) extension for ⟨, ⟩ is coNP and checking whether 𝐸 ⊧ 

can be accomplished in polynomial time. Checking (ii) is in PTIME too. Therefore, the complement of the above-stated problem 
is in Σ𝑝

2.

Thus, 𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛 (resp., 𝐶𝐴𝐿

𝚖𝚜-𝚜𝚜𝚝) is in Σ𝑝

3 since it suffices to guess a set 𝐸 ⊆  of arguments containing 𝑎 and check that 𝐸 is a 
maximal-set preferred (resp. semi-stable) extension for Υ by using the above-described Π𝑝

2 oracle. Hence, it follows that 𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛

(resp. 𝐶𝐴𝐿
𝚖𝚜-𝚜𝚜𝚝) is in Σ𝑝

3.

• Skeptical acceptance (𝑆𝐴𝜎
𝚖𝚜−𝚌𝚘, 𝑆𝐴𝜎

𝚖𝚜−𝚜𝚝, 𝑆𝐴𝜎
𝚖𝚜−𝚙𝚛, 𝑆𝐴𝜎

𝚖𝚜−𝚜𝚜𝚝). For each semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿} consider 
the complementary problem of checking whether there exists a maximal-set 𝜎 -extension for Υ not containing 𝑎. Reasoning as 
in the cases of the credulous acceptance considered earlier, it can be shown that this problem is in Σ𝑝

2 for (i)  ∈ {𝚌𝚘,𝚜𝚝} and 
𝜎 ∈ {𝐾, 𝐿} and (ii)  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and in Σ𝑝

3 for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿. Therefore, 𝑆𝐴𝐿
𝚖𝚜− is in Π𝑝

2 for  ∈ {𝚌𝚘,𝚜𝚝}
and in Π𝑝

3 for  ∈ {𝚙𝚛,𝚜𝚜𝚝} while 𝑆𝐴𝐾
𝚖𝚜− is in Π𝑝

2 for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝}. □

The following lemma generalizes the result of Lemma 8 to the case of SWAF.

Lemma 9. Given a SWAF ⟨, , , (1, … , 𝑛)⟩, and 𝑛 natural numbers 𝑘1 ≤ |1|, … , 𝑘𝑛 ≤ |𝑛|, deciding whether there exists a 
complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘𝑖 constraints of 𝑖, for each 𝑖 ∈ [1..𝑛] is in:

• 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under Lukasiewicz logic, and

• 𝑁𝑃 (resp., 𝑁𝑃 , 𝑁𝑃 , Σ𝑝

2) under Kleene logic.

The result still holds if it is required that the extension 𝐸 contains a given argument 𝑎 ∈, that is for the problem of deciding whether there 
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑖 constraints of 𝑖, 
for each 𝑖 ∈ [1..𝑛].

Proof. The result can be proved by reasoning analogously to the proof of Lemma 8. □

Theorem 5. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Δ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) The lower bound results derive from the fact that they hold for any SWAFs ⟨, , , (1, … , 𝑛)⟩ where |𝑖| = 1
for each 𝑖 ∈ [1, 𝑛], that is, for LWAFs.

(Membership.) We now provide the membership results for each considered semantics and problem. Let Υ = ⟨, , , (1, … , 𝑛)⟩
be a SWAF and 𝑎 ∈ the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Υ.

• (𝐶𝐴∗
𝚖𝚌- with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}). We consider the complete (resp., stable, preferred, semi-stable) semantics. We first call an 

NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to check that ⟨, , ⟩ admits a complete (resp., stable, preferred, semi-stable) extension containing 
𝑎. This corresponds to checking credulous acceptance for a CAF; note that this problem is in Σ𝑝

2 for preferred semantics under 
Lukasiewicz logic, but it is in NP under Kleene logic— we will reconsider this at the end of this proof to provide a better upper 
bound for 𝐶𝐴𝐾

𝚖𝚌-𝚙𝚛. Let 𝑚𝑖 = |𝑖| be the number of constraints in the 𝑖-th stratum, with 𝑖 ∈ [1..𝑛]. We perform 𝑛 consecutive 
binary search in the intervals [0, 𝑚𝑖] to find the maximum number of constraints that are satisfied by complete (resp., stable, 
preferred, semi-stable) extensions at each stratum, given the maximum number of constraints that are satisfied at previous strata, 
as follows. In the first execution of the binary search in [0, 𝑚1], we use an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there 
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘 constraints of 1 (cf. 
24

Lemma 9). Let 𝑘1
𝑚𝑎𝑥

be the maximum number of constraints in 1 that are satisfied by the extensions of ⟨, , ⟩. During the 
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𝑖-th execution of the binary search in [0, 𝑚𝑖], with 𝑖 ∈ [2..𝑛], we use an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there 
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘𝑗

𝑚𝑎𝑥 constraints of 𝑗 , for 
each 𝑗 ∈ [1..𝑖 − 1], and at least 𝑘 constraints of 𝑖 (cf. Lemma 9). Hence, at the end of the 𝑖-th binary search in [0, 𝑚𝑖], we find 
the maximum number 𝑘𝑖

𝑚𝑎𝑥
of constraints in 𝑖, that are satisfied by any extension 𝐸, given that 𝑘𝑗

𝑚𝑎𝑥 is the maximum number 
of constraints in 𝑗 that are satisfied by 𝐸, with 𝑗 ∈ [1..𝑖 − 1]. Finally, given the numbers 𝑘1

𝑚𝑎𝑥
, … , 𝑘𝑛

𝑚𝑎𝑥
, we use another call to 

an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑖
𝑚𝑎𝑥

constraints of 𝑖, for each 𝑖 ∈ [1..𝑛]; as stated in Lemma 9, checking this is 
still in NP (resp., NP, Σ𝑝

2, Σ𝑝

2).

We now discuss the complexity of the above-described procedure. For the 𝑖-th execution of the binary search in [0, 𝑚𝑖], the number 
of calls to the oracle is bounded by 𝑂(𝑙𝑜𝑔 𝑚𝑖), with 𝑖 ∈ [1..𝑛]. By observing that the overall number of calls to the oracle is bounded 
by 𝑂(𝑛 𝑙𝑜𝑔 𝑚), where 𝑚 = max{𝑚𝑖 | 𝑖 ∈ [1..𝑛]}, we obtain that the complexity of 𝐶𝐴∗

𝚖𝚌-𝚌𝚘 (resp. 𝐶𝐴∗
𝚖𝚌-𝚜𝚝, 𝐶𝐴∗

𝚖𝚌-𝚙𝚛, 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝), is 

in the class Δ𝑝

2 (resp., Δ𝑝

2, Δ𝑝

3, Δ𝑝

3). Furthermore, since for 𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛 it is sufficient to use NP oracles only (cf. Lemma 9), a better 

upper bound can be found, that is, 𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛 can be decided in Δ𝑝

2.

• (𝑆𝐴∗
𝚖𝚌- with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}). We consider the complete (resp. stable, preferred, semi-stable) semantics. Consider the com-

plementary problem of 𝑆𝐴∗
𝚖𝚌-𝚌𝚘 (resp. 𝑆𝐴∗

𝚖𝚌-𝚜𝚝, 𝑆𝐴∗
𝚖𝚌-𝚙𝚛, 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝), that is checking whether there exists a maximum-cardinality 
complete (resp. stable, preferred, semi-stable) extension of ⟨, , , (1, … , 𝑛)⟩ not containing 𝑎. We can show that this prob-

lem is in Δ𝑝

2 (resp., Δ𝑝

2, Δ𝑝

3, Δ𝑝

3) by reasoning as in the proof of 𝐶𝐴∗
𝚖𝚌- , with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}, in the previous item. The 

only difference is that in the last call to the oracle we have to decide whether there exists a complete (resp., stable, preferred, 
semi-stable) extension 𝐸 for ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘𝑖

𝑚𝑎𝑥
constraints of 𝑖, for each 𝑖 ∈ [1..𝑛], where 

each 𝑘𝑖
𝑚𝑎𝑥

is determined by a binary search as described above. Since the complexity of this problem is in NP (resp., NP, Σ𝑝

2 , Σ𝑝

2), 
we obtain that complexity of the complementary problem of 𝑆𝐴∗

𝚖𝚌-𝚌𝚘 (resp. 𝑆𝐴∗
𝚖𝚌-𝚜𝚝, 𝑆𝐴∗

𝚖𝚌-𝚙𝚛, 𝑆𝐴∗
𝚖𝚌-𝚜𝚜𝚝), is in the class Δ𝑝

2 (resp., 
Δ𝑝

2, Δ𝑝

3, Δ𝑝

3). Finally, since Δ𝑝

𝑖
is closed under complement, the statement follows. □

A.4. WAF with linearly ordered weak constraints

We now provide the proof of Theorem 6, whose statement is recalled below.

Theorem 6. For any LWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-complete for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-complete for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(iii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Membership.) Recall that for LWAF the maximal-set and maximum-cardinality semantics coincide, that is, 𝐶𝐴𝜎
𝚖𝚜 = 𝐶𝐴𝜎

𝚖𝚌
and 𝑆𝐴𝜎

𝚖𝚜 = 𝑆𝐴𝜎
𝚖𝚌 . Therefore, the membership results for 𝐶𝐴𝐾

𝚜𝚜𝚝, 𝑆𝐴𝐾
𝚜𝚜𝚝, and 𝑆𝐴𝐾

𝚙𝚛 follows from the fact that a LWAF is SWAF under 
maximal-set semantics, and thus these results follow from Theorem 4. Moreover, all the other results follow from Theorem 5, since 
a LWAF is SWAF under maximum-cardinality semantics.

(Hardness.) We now prove the hardness results.

- (𝐶𝐴∗
𝚜𝚝 and 𝑆𝐴∗

𝚜𝚝). The hardness result derives from analogous results for logic programs with weighted weak constraints with 
priorities, for which credulous and skeptical reasoning is Δ𝑝

2-complete [37]. Thus, since every logic program 𝐿𝑃 under total stable 
model semantics can be translated into an AF Λ, where the set of stable models of 𝐿𝑃 (restricted to positive literals) coincide 
with the set of stable extensions of Λ [40], a logic program with weighted weak constraints with priorities (𝐿𝑃 , {𝑤1}, ..., {𝑤𝑘}), 
can be translated into a LWAF Ω where weak constraints are linearly ordered. The result presented in [37] holds even if the 
weight of every weak constraint 𝑤𝑖 is 2𝑖−1, with 𝑖 ∈ [1, 𝑘], meaning that a linear order is imposed.

- (𝐶𝐴∗
𝚌𝚘 and 𝑆𝐴∗

𝚌𝚘). The hardness result follows from the Δ𝑝

2-complete problem 𝐶𝐴∗
𝚜𝚝 for LWAF. Given a LWAF ⟨, , , (1, … ,

𝑛)⟩, 𝐸 ∈ 𝚜𝚝∗(Υ) iff 𝐸 ∈ 𝚌𝚘∗(Υ′) where Υ′ = ⟨, , ′ =  ∪′′, (1, … , 𝑛)⟩ and ′′ = {𝚝⇒ 𝑎 ∨¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴∗
𝚜𝚝(Υ, 𝑔)

is true iff 𝐶𝐴∗
𝚌𝚘(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚌𝚘(Υ
′, 𝑔) is true.

- (𝐶𝐴𝐾
𝚙𝚛). The hardness result follows from the Δ𝑝

2-complete problem 𝐶𝐴𝐾
𝚜𝚝 for LWAF. Given a LWAF ⟨, , , (1, … , 𝑛)⟩, 

𝐸 ∈ 𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚙𝚛𝐾 (Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, (1, … , 𝑛)⟩ and ′′ = {𝚝⇒ 𝑎 ∨ ¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴𝐾
𝚜𝚝(Υ, 𝑔) is 

true iff 𝐶𝐴∗
𝚙𝚛(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚙𝚛(Υ
′, 𝑔) is true.

- (𝐶𝐴∗
𝚜𝚜𝚝, 𝐶𝐴𝐿

𝚙𝚛, 𝑆𝐴∗
𝚙𝚛, and 𝑆𝐴∗

𝚜𝚜𝚝). The hardness results follow from Theorem 1 since any CAF ⟨, , ⟩ is an LWAF 
25

⟨, , , ∅⟩. □
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A.5. WAF with denial constraints

We start providing the proofs of Lemma 3 and Lemma 4 whose statements are recalled below.

Lemma 3. For any NWAF Υ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, it holds that 𝐾 (Υ) = 𝐿(Υ).

Proof. Let Υ = ⟨, , , ⟩, and assume that 𝑆 ∈ 𝚌𝚘(⟨, ⟩) is a complete extension of ⟨, ⟩. Let 𝜅 ∶ 𝓁1 ∧⋯ ∧ 𝓁𝑛 ⇒ 𝚏∈ ∪ be 
a denial constraint. Then, 𝑆 ⊧ 𝜅 under Lukasiewicz (and Kleene) logic iff there exists at least one positive (resp. negative) argument 
𝓁𝑖 s.t. 𝓁𝑖 ∈ 𝐷𝑒𝑓 (𝑆) (resp. 𝓁𝑖 ∈ 𝑆). Thus 𝑇 ⊧ 𝜅 under Lukasiewicz logic iff 𝑇 ⊧ 𝜅 under Kleene logic. □

Lemma 4. Let Υ = ⟨, , , ⟩ be a NWAF, 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2, and  ′ ⊆  . Then, under both Kleene and Lukasiewicz 
logic, 𝐸1 ⊧  ∪ ′ implies 𝐸2 ⊧  ∪ ′.

Proof. First, recall that 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and that 𝐸1 = 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2) = 𝐸2. Considering Kleene’s 
logic, every constraint 𝜅 ∈  ∪ can be rewritten in standard form as a disjunction of conjunction of literals, that is, in the form 
𝜅 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧𝓁1
𝑛1
) ∨⋯ ∨(𝓁𝑘

1 ∧⋯ ∧𝓁𝑘
𝑛𝑘
). If 𝐸1 ⊧ 𝜅, it means that there must be 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧𝓁𝑖
𝑛𝑖
). Moreover, as 

𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. As for Lemma 3 Kleene’s 

logic and Lukasiewicz’s logic coincide, the results hold also under Lukasiewicz’s logic. □

We now provide the proofs of Theorem 7 and Theorem 8, whose statements are recalled below.

Theorem 7. For any NCAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) The lower bound results for 𝐶𝐴∗


with  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and for 𝑆𝐴∗


with  ∈ {𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} derive from the 
fact that they hold for any CAF ⟨, , ⟩ where  = ∅, that is, for AF. As regard the coNP-hardness for 𝑆𝐴∗

𝚌𝚘 , it suffices to observe 
that, in the proof of Theorem 1, to show the coNP-hardness of 𝑆𝐴𝚌𝚘, a CAF where  consists only of denial constraints is used. That 
is, the proof provided in proof of Theorem 1 still holds also for NCAFs.

(Membership.) All the membership results except that for 𝐶𝐴∗
𝚙𝚛 derive from the analogous ones of Theorem 1. Regarding 𝐶𝐴∗

𝚙𝚛, it 
is in 𝑁𝑃 since after guessing a set 𝑆 ⊆  of arguments containing 𝑎, we only need to check that (𝑖) 𝑆 is a complete extension for ⟨, ⟩, i.e., 𝑆 is admissible and contains all the arguments it defends (in PTIME) and (𝑖𝑖) 𝑆 ⊧  (in PTIME). In fact, since  ∪

consists of denial constraints only, by Lemma 4, we do not have to check that 𝑆 is maximal, as it is sufficient to check that 𝑆 is a 
complete extension satisfying . Indeed, by Lemma 4, if there is a complete extension containing 𝑎 and satisfying , then there is 
also a preferred extension containing 𝑎 and satisfying . □

Theorem 8. For any NWAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜 is Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜} and 𝜎 ∈ {𝐾, 𝐿}.

• 𝑆𝐴𝜎
𝚖𝚜 is Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

Proof. (Membership.) The membership results under Kleene logic follow from the general case of WAF (cf. Theorem 2) as any NWAF 
is also a WAF. Moreover, since the Lukasiewicz and Kleene logics coincide for denial constraints (cf. Lemma 3), the results also hold 
under Lukasiewicz logic.

(Hardness.)

• (𝑆𝐴∗
𝚖𝚜-𝚙𝚛, 𝐶𝐴∗

𝚖𝚜-𝚜𝚜𝚝 and 𝑆𝐴∗
𝚖𝚜-𝚜𝚜𝚝) The lower bound results derive from the fact that they hold for any NWAF ⟨, , , ⟩ where 

 = = ∅, that is, for AF.

• (𝐶𝐴∗
𝚖𝚜-𝚌𝚘 and 𝑆𝐴∗

𝚖𝚜-𝚌𝚘). The lower bound for credulous acceptance under complete semantics can be proved by showing 
that, let Λ = ⟨, ⟩, 𝚜𝚜𝚝(Λ) = 𝚖𝚜-𝚌𝚘(Υ = ⟨, , , ⟩) where  = ∅, and  = {𝑥 ∧ ¬𝑥 ⇒ 𝚏 ∣ 𝑥 ∈ }. First, recall that 
𝚜𝚜𝚝(Λ) ⊆ 𝚌𝚘∗(⟨, , ⟩). Then, since  selects from the extensions in 𝚌𝚘∗(⟨, , ⟩) those that are maximal w.r.t. the pres-

ence of arguments whose status is either true or false (or equivalently that are minimal w.r.t. undecided arguments), we have 
that 𝚖𝚜-𝚌𝚘∗(⟨, , , ⟩) = 𝚜𝚜𝚝(⟨, ⟩), from which the result follows.

• (𝐶𝐴∗
𝚖𝚜-𝚙𝚛). The lower bound for credulous acceptance under preferred semantics can be proved by showing that, let Λ = ⟨, ⟩, 

𝚜𝚜𝚝(Λ) = 𝚖𝚜-𝚙𝚛(⟨, , , ⟩) where  = ∅, and  = {𝑥 ∧ ¬𝑥 ⇒ 𝚏 ∣ 𝑥 ∈}. Recall that 𝚜𝚜𝚝(Λ) ⊆ 𝚙𝚛∗(⟨, , ⟩). Again, since 
 selects from the extensions in 𝚙𝚛∗(⟨, , ⟩) those that are maximal w.r.t. true or false arguments (or equivalently that are 
26

minimal w.r.t. undecided arguments), we have that 𝚖𝚜-𝚙𝚛∗(⟨, , , ⟩) = 𝚜𝚜𝚝(⟨, ⟩), from which the result follows.
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• (𝐶𝐴∗
𝚖𝚜-𝚜𝚝 and 𝑆𝐴∗

𝚖𝚜-𝚜𝚝). The hardness results derive from the fact that in reducing disjunctive programs to logic programs with 
strong and weak constraints (see Appendix C), which in turn can be rewritten into a WAF, all constraints used are denials. Recall 
that under stable semantics, a constraint 𝚝⇒ 𝑎 ∨ 𝑏 can be rewritten into the equivalent constraint ¬𝑎 ∧ ¬𝑏 ⇒ 𝚏. □

Appendix B. Normal and disjunctive logic programs

We briefly review (normal) logic programs and disjunctive logic programs, recalling how partial stable models can be computed 
by reducing to total stable models, as well as the relationship between logic programs and abstract argumentation frameworks.

B.1. Normal logic programs

The semantics of a logic program is given by the set of its partial stable models (PSMs) (corresponding to complete extensions of 
AFs [40]). We summarize the basic concepts which underly the notion of PSMs [88].

A (normal) logic program (LP) is a set of rules of the form 𝐴 ← 𝐵1 ∧⋯ ∧ 𝐵𝑛, with 𝑛 ≥ 0, where 𝐴 is an atom, called head, and 
𝐵1 ∧⋯ ∧𝐵𝑛 is a conjunction of literals, called body. We consider programs without function symbols. Given a program 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 )
denotes the set of all ground instances of the rules in 𝑃 . The Herbrand Base of a program 𝑃 , i.e., the set of all ground atoms which can 
be constructed using predicate and constant symbols occurring in 𝑃 , is denoted by 𝐵𝑃 , whereas ¬𝐵𝑃 denotes the set {¬𝐴 ∣ 𝐴 ∈ 𝐵𝑃 }. 
Analogously, for any set 𝑆 ⊆ 𝐵𝑃 ∪¬𝐵𝑃 , ¬𝑆 denotes the set {¬𝐴 ∣ 𝐴 ∈ 𝑆}, where ¬¬𝐴 = 𝐴. Given 𝐼 ⊆ 𝐵𝑃 ∪¬𝐵𝑃 , 𝑝𝑜𝑠(𝐼) (resp., 𝑛𝑒𝑔(𝐼)) 
stands for 𝐼 ∩𝐵𝑃 (resp., ¬𝐼 ∩𝐵𝑃 ). 𝐼 is consistent if 𝑝𝑜𝑠(𝐼) ∩ ¬𝑛𝑒𝑔(𝐼) = ∅, otherwise 𝐼 is inconsistent.

Given a program 𝑃 , 𝐼 ⊆ 𝐵𝑃 ∪ ¬𝐵𝑃 is an interpretation of 𝑃 if 𝐼 is consistent. Also, 𝐼 is total if 𝑝𝑜𝑠(𝐼) ∪ 𝑛𝑒𝑔(𝐼) = 𝐵𝑃 , partial

otherwise. A partial interpretation 𝑀 of a program 𝑃 is a partial model of 𝑃 if for each ¬𝐴 ∈ 𝑀 every rule in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) having as 
head 𝐴 contains at least one body literal 𝐵 such that ¬𝐵 ∈ 𝑀 . Given a program 𝑃 and a partial model 𝑀 , the positive instantiation 
of 𝑃 w.r.t. 𝑀 , denoted by 𝑃 𝑀 , is obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) by deleting: (𝑎) each rule containing a negative literal ¬𝐴 such that 
𝐴 ∈ 𝑝𝑜𝑠(𝑀); (𝑏) each rule containing a literal 𝐵 such that neither 𝐵 nor ¬𝐵 is in 𝑀 ; (𝑐) all the negative literals in the remaining 
rules. 𝑀 is a partial stable model of 𝑃 iff 𝑀 is the minimal model of 𝑃 𝑀 . Alternatively, 𝑃𝑀 could be built by replacing every negated 
body literal in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 ) by its truth value.

The set of partial stable models of a logic program 𝑃 , denoted by  (𝑃 ), define a meet semi-lattice. The well-founded model 
(denoted by  (𝑃 )) and the maximal-stable models (𝑃 ),6 are defined by considering ⊆-minimal and ⊆-maximal elements. The 
set of (total) stable models (denoted by  (𝑃 )) is obtained by considering the maximal-stable models which are total, whereas the 
least-undefined models (denoted by (𝑃 )) are obtained by considering the maximal-stable models with a ⊆-minimal set of undefined 
atoms (i.e., atoms which are neither true or false). The max-deterministic model (denoted by (𝑃 )) is the ⊆-maximal PSM contained 
in every maximal-stable model [87]. To denote a specific semantics, we use the acronyms 𝚙𝚜, 𝚜𝚝, 𝚖𝚜, 𝚕𝚜, 𝚠𝚏 and 𝚖𝚍 for the semantics 
partial stable, (total) stable, maximal stable, least-undefined stable, well-founded, and max-deterministic, respectively.

The semantics of a logic program is given by the set of its partial stable models or by one of the restricted sets above recalled.

B.2. Disjunctive logic programs

The partial stable model semantics has been extended to disjunctive logic programs (DLPs), that is, programs whose rules allow 
disjunctive heads.

Positive disjunctive programs may have more than one minimal model. A set of literals 𝑀 is a partial stable model of 𝑃 iff 𝑀 is 
a minimal model of 𝑃 𝑀 , the positive disjunctive program derived through the same steps defined earlier for normal programs.

Example 11. Consider the disjunctive program 𝑃 :

𝑎 ← ¬𝑏

𝑏 ← ¬𝑎

𝑐 ∨ 𝑑 ← 𝑎

𝑑 ← 𝑐

There are three partial stable models for 𝑃 : 𝑀1 = {¬𝑐}, 𝑀2 = {¬𝑎, 𝑏, ¬𝑐, ¬𝑑} and 𝑀3 = {𝑎, ¬𝑏, ¬𝑐, 𝑑}. 𝑀2 and 𝑀3 are maximal stable 
models, as well as total stable and least undefined stable models. □

B.2.1. Computing partial stable models

A technique for computing partial stable models using Answer Set Programming (ASP) solvers (solvers computing total stable 
models) has been proposed in [68]. For the sake of presentation, here we consider ground programs.

For each atom 𝑎 in 𝑃 we consider a dummy atom 𝑎∗ whose meaning is atom a is potentially true. The program 𝑃 ∗ is defined as 
follows:

𝑃 ∗ = {𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐∗1 , .., 𝑐∗
𝑛
∣ 𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐1, .., 𝑐𝑛 ∈ 𝑃 } ∪

{𝑎∗ ← 𝑏∗1, .., 𝑏
∗
𝑚
,¬𝑐1, .., 𝑐𝑛 ∣ 𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐1, .., 𝑐𝑛 ∈ 𝑃 } ∪

{𝑎∗ ← 𝑎 ∣ a occurs in 𝑃 }
27

6 Corresponding to Dung’s preferred extensions [47].
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It has been shown that for each partial stable model 𝑀 of 𝑃 there is a total stable 𝑁 of 𝑃 ∗ and vice versa. 𝑀 is obtained 
from 𝑁 as follows 𝑀 = {𝑎 | 𝑎∗ ∈ 𝑁 ∧ 𝑎 ∈ 𝑁} ∪ {¬𝑎 | ¬𝑎∗ ∈ 𝑁 ∧ ¬𝑎 ∈ 𝑁}. On the other side 𝑁 can be derived from 𝑀 as follows 
𝑁 = {𝓁, 𝓁∗ | 𝓁 ∈ 𝑀} ∪ {𝓁∗, ¬𝓁 | 𝓁, ¬𝓁 ∉ 𝑀}.

Example 12. Consider the program 𝑃 of Example 11. The program 𝑃 ∗ is defined as follows:

𝑎 ← ¬𝑏∗

𝑏 ← ¬𝑎∗

𝑐 ∨ 𝑑 ← 𝑎

𝑑 ← 𝑐

𝑎∗ ← ¬𝑏

𝑏∗ ← ¬𝑎

𝑐∗ ∨ 𝑑∗ ← 𝑎∗

𝑑∗ ← 𝑐∗

𝑎∗ ← 𝑎

𝑏∗ ← 𝑏

𝑐∗ ← 𝑐

𝑑∗ ← 𝑑

𝑃 ∗ has three total stable models:

• 𝑁1 = {𝑎∗, ¬𝑎, 𝑏∗, ¬𝑏, ¬𝑐∗, ¬𝑐, 𝑑∗, ¬𝑑},

• 𝑁2 = {¬𝑎∗, ¬𝑎, 𝑏∗, 𝑏, ¬𝑐∗, ¬𝑐, ¬𝑑∗, ¬𝑑},

• 𝑁3 = {𝑎∗, 𝑎, ¬𝑏∗, ¬𝑏, ¬𝑐∗, ¬𝑐, 𝑑∗, 𝑑},

corresponding to PSMs 𝑀1, 𝑀2 and 𝑀3 of Example 11, respectively.

B.3. Logic programs and argumentation frameworks

It is well-knows that there is a tight relationship between AFs and LPs under partial stable model semantics. In particular, for each 
AF Λ there is a normal logic program 𝑃Λ (derived from Λ) such that the set complete (resp., grounded, stable, preferred, semi-stable) 
extensions of Λ is equivalent to the set of partial (resp., well-founded, total, maximal, least-undefined) stable models of 𝑃Λ [40]. It 
has been shown also the reverse result for all semantics, except for the least-undefined stable model semantics.

Appendix C. Weak constrained logic programs

Logic programs with weak constraints have been proposed in [37] and implemented in the well-known DLV system [9]. Here, we 
consider weak constraints with a syntax similar to that defined in the core of the paper for AFs and a maximal-set semantics.7

Definition 16. A (ground) logic program with weak constraints (WLP) is a triple ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 is a (ground) normal logic 
program,  is a set of (ground, strong) constraints and  is a set of (ground) weak constraints.

The semantics of a weak constrained logic program is given by the partial (resp., maximal, total, least-undefined) stable models 
that satisfy all strong constraints in  and a maximal set of weak constraints in  .

The set of maximal-set partial (resp., total, maximal, least-undefined) stable models of a WLP 𝑃 is denoted by 𝙼𝚂-(𝑃 ) (resp., 
𝙼𝚂- (𝑃 ), 𝙼𝚂-(𝑃 ), 𝙼𝚂-(𝑃 )).
Example 13. Consider the weak constrained program 𝑃 derived from the WAF of Example 8 (example in the core of the paper):

• 𝐿𝑃 = {𝑎 ← ¬𝑏; 𝑏 ← ¬𝑎; 𝑐 ← ¬𝑑; 𝑑 ← ¬𝑐};

•  = ∅;

•  = {𝑤1 = 𝑐⇒𝚏, 𝑤2 = 𝑎 ∨ ¬𝑎⇒𝚞}.

It is easy to check that 𝑃 has 9 partial stable models: 𝑀0 = {}, 𝑀1 = {𝑎, ¬𝑏}, 𝑀2 = {¬𝑎, 𝑏}, 𝑀3 = {𝑐, ¬𝑑}, 𝑀4 = {¬𝑐, 𝑑}, 𝑀5 =
{𝑎, ¬𝑏, 𝑐, ¬𝑑}, 𝑀6 = {𝑎, ¬𝑏, ¬𝑐, 𝑑}, 𝑀7 = {¬𝑎, 𝑏, 𝑐, ¬𝑑} and 𝑀8 = {¬𝑎, 𝑏, ¬𝑐, 𝑑}. In particular, 𝑀0 is the well-founded model, whereas 
𝐸5, 𝐸6, 𝐸7, 𝐸8 are total, maximal and least-undefined stable models of 𝑃 . These models correspond to the complete extensions of the 
AF in Example 8.

Regarding the satisfaction of weak constraints, we have that 𝑀0 ⊧ {𝑤2}, 𝑀4 ⊧ {𝑤1, 𝑤2}, 𝑀6 ⊧ {𝑤1}, and 𝑀8 ⊧ {𝑤1}, whereas the 
other partial stable models do not satisfy any constraint. Therefore, the maximal-set maximal (total, least-undefined) stable models are 
𝑀6 and 𝑀8, whereas there is only one maximal-set partial stable model, which is 𝑀4 . These models correspond to the maximal-set 
extensions of the WAF in Example 8. □

C.1. Mapping disjunctive programs to weak constrained logic programs

It has been shown that the introduction of disjunctive heads increases the expressivity of logic programs of one level in the 
polynomial hierarchy [58,59]. Restricted cases of weak constraints under (total) stable model semantics have been studied in [66], 
where it is shown that the expressivity of LPs grows of one level (𝐶𝐴𝚜𝚝 is Σ𝑝

2-complete and 𝑆𝐴𝚜𝚝 is Π𝑝

2-complete) and in [37], where 
it is shown that the expressivity of DLP grows to Δ𝑝

2 (the paper assumes a maximum-cardinality based semantics). We now show that 
(normal) WLPs, under maximal-set semantics, are no less expressive than DLPs. This is shown by mapping DLPs to WLPs.
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7 Weak constraints implemented in DLV have a similar syntax, but a maximum-cardinality based semantics.



Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Definition 17. For any disjunctive program 𝑃 , 𝑇 (𝑃 ) = ⟨𝐿𝑃 , , ⟩ is the program with constraints (and without disjunctive rules) 
derived as follows:

• 𝐿𝑃 is derived from 𝑃 by replacing every disjunctive rule 𝑎1 ∨ ⋯ ∨ 𝑎𝑛 ← 𝜑 with 2 × 𝑛 normal rules of the form: 𝑎𝑖 ←
𝜑, ¬𝑎𝑖 and 𝑎𝑖 ← 𝜑, ¬𝑎𝑖

•  = {𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛 ∣ 𝑎1 ∨⋯ ∨ 𝑎𝑛 ← 𝜑 ∈ 𝑃 , 𝑛 > 1}8;

•  = {𝑎⇒𝚏 | 𝑎 occurs in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃 )}.

Given a disjunctive logic program 𝑃 and an interpretation 𝐼 of 𝑇 (𝑃 ), then 𝐼[𝑃 ] denotes the subset of 𝐼 whose atoms occur 
in 𝑃 .

Theorem 10. For any disjunctive logic program 𝑃 , it is the case that  (𝑃 ) = {𝑀[𝑃 ] | 𝑀 ∈ 𝙼𝚂- (𝑇 (𝑃 ))}.

Proof. Let 𝑇 (𝑃 ) = ⟨𝐿𝑃 , , ⟩, we first prove that for every total stable model 𝑀 of 𝑃 there is 𝑀 ′ such that 𝑀 ∪𝑀 ′ is a total stable 
model of 𝐿𝑃 and that such model is a best model of 𝑇 (𝑃 ). Given 𝑀 , for each overlined atom 𝑎̄ occurring in 𝑇 (𝑃 ), 𝑀 ′ contains 
either 𝑎̄ or ¬𝑎̄. More specifically, for every 𝑎̄ occurring in 𝑇 (𝑃 ), if there are in 𝑇 (𝑃 ) two rules 𝑎 ← 𝜑, ¬𝑎̄ and 𝑎̄ ← 𝜑, ¬𝑎 such that 
𝑀 ⊧ 𝜑, then ¬𝑎 ∈ 𝑀 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑎̄ ∈ 𝑀 ′, otherwise ¬𝑎̄ ∈ 𝑀 ′. Clearly, if 𝑀 is a minimal model of 𝑃 𝑀 , 𝑀 ∪𝑀 ′ is the minimal model of 
𝐿𝑃 𝑀∪𝑀 ′

. Indeed, for each rule having an atom 𝑎 ∈ 𝑀 occurring in the head of a rule 𝑟 of 𝑃 such that 𝑀 ⊧ 𝑏𝑜𝑑𝑦(𝑟), there is a rule 
𝑟′ in 𝑇 (𝑃 ) (derived from 𝑟) such that 𝑀 ∪𝑀 ′ ⊧ 𝑏𝑜𝑑𝑦(𝑟′). Moreover, 𝑀 ∪𝑀 ′ ⊧  as 𝑀 is a model of 𝑃 and is a best model since 𝑀
is a minimal model that satisfies a maximal set of constraints in  .

We now show that for each 𝑀 ∈ 𝙼𝚂- (𝑇 (𝑃 )), 𝑀[𝑃 ] is a stable model of 𝑃 . The set  (𝐿𝑃 ) could contain stable models which 
do not satisfy rules of 𝑃 with disjunctive heads. However, as for each disjunctive rule 𝑎1 ∨⋯ ∨ 𝑎𝑛 ← 𝜑 we have a strong constraint 
𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛, these models are not feasible. The maximization of weak constraints guarantees that our best models are minimal 
model of 𝑃 . □

Observe that for normal logic programs 𝑃 , the corresponding WLP is 𝑇 (𝑃 ) = ⟨𝐿𝑃 , , ⟩, where we have that 𝐿𝑃 = 𝑃 and  = ∅. 
Notably, the set of weak constraints  is useless as minimality is implicit in the total stable model semantics.

Example 14. Consider the program of Example 11. The corresponding WLP is ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 consists of the following 
rules:

𝑎 ← ¬𝑏

𝑏 ← ¬𝑎

𝑐 ← 𝑎,¬𝑐

𝑐 ← 𝑎,¬𝑐

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑐

whereas  = {𝜍 = 𝑎 ⇒ 𝑐 ∨ 𝑑} and  = {𝑤1 = 𝑎⇒𝚏; 𝑤2 = 𝑏⇒𝚏; 𝑤3 = 𝑐⇒𝚏; 𝑤4 = 𝑑⇒𝚏}.

The total stable models of 𝐿𝑃 are:

• 𝑇1 = {¬𝑎, 𝑏, ¬𝑐, ¬𝑑, ¬𝑐, ¬𝑑},

• 𝑇2 = {𝑎, ¬𝑏, ¬𝑐, ¬𝑑, 𝑐, 𝑑},

• 𝑇3 = {𝑎, ¬𝑏, ¬𝑐, 𝑑, 𝑐, ¬𝑑},

• 𝑇4 = {𝑎, ¬𝑏, 𝑐, 𝑑, ¬𝑐, ¬𝑑}.

As 𝑇2 ̸⊧ 𝜍, the feasible models are 𝑇1, 𝑇3, 𝑇4. Considering the satisfaction of weak constraints, we have that:

• 𝑇1 ⊧ {𝑤1, 𝑤3, 𝑤4},

• 𝑇3 ⊧ {𝑤2, 𝑤3},

• 𝑁8 ⊧ {𝑤2}.

Therefore, the best models are 𝑇1 and 𝑇3. Comparing the best models of 𝑇 (𝑃 ) with the stable model of 𝑃 (see Example 11) we 
have 𝑇1[𝑃 ] = 𝑀2 and 𝑇3[𝑃 ] = 𝑀3. □

The next final example shows how a disjunctive logic program 𝑃 is first translated into a normal logic programs 𝑃 ∗ so that 
(𝑃 ) ≡  (𝑃 ∗) (using the approach in B.2.1), and then how 𝑃 ∗ is mapped into a logic program with weak constraints.
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8 Under stable semantics or Kleene logic, 𝜅 ∶ 𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛 can be equivalently rewritten as a denial constraint 𝜅′ ∶ 𝜑 ∧ ¬𝑎1 ∧⋯ ∧ ¬𝑎𝑛 ⇒ 𝚏.



Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Example 15. Consider again the program 𝑃 of Example 11, and the corresponding program 𝑃 ∗ of Example 12. The corresponding 
WLP in this case is 𝑇 (𝑃 ∗) = ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 is the set of rules:

𝑎 ← ¬𝑏∗

𝑏 ← ¬𝑎∗

𝑐 ← 𝑎,¬𝑐

𝑐 ← 𝑎,¬𝑐

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑐

𝑎∗ ← ¬𝑏

𝑏∗ ← ¬𝑎

𝑐∗ ← 𝑎∗,¬𝑐∗

𝑐∗ ← 𝑎∗,¬𝑐∗

𝑑∗ ← 𝑎∗,¬𝑑∗

𝑑∗ ← 𝑎∗,¬𝑑∗

𝑑∗ ← 𝑐∗

𝑎∗ ← 𝑎

𝑏∗ ← 𝑏

𝑐∗ ← 𝑐

𝑑∗ ← 𝑑

Moreover,  = {𝜍 = 𝑎 ⇒ 𝑐 ∨ 𝑑; 𝜍∗ = 𝑎∗ ⇒ 𝑐∗ ∨ 𝑑∗} and  = {𝑤1 = 𝑎⇒𝚏; 𝑤2 = 𝑏⇒𝚏; 𝑤3 = 𝑐⇒𝚏; 𝑤4 = 𝑑⇒𝚏; 𝑤∗
1 = 𝑎∗⇒𝚏; 𝑤∗

2 =
𝑏∗⇒𝚏; 𝑤∗

3 = 𝑐∗⇒𝚏; 𝑤∗
4 = 𝑑∗⇒𝚏}.

The total stable models of 𝐿𝑃 are:

∙ 𝑁0 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, ¬𝑐, ¬𝑑, 𝑐∗, 𝑑∗},

∙ 𝑁1 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, 𝑑∗, ¬𝑐, ¬𝑑, 𝑐∗, ¬𝑑∗},

∙ 𝑁2 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, 𝑐∗, ¬𝑑, 𝑑∗, ¬𝑐, ¬𝑑, ¬𝑐∗, ¬𝑑∗},

∙ 𝑁3 = {¬𝑎, ¬𝑎∗, 𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, ¬𝑑, ¬𝑐, ¬𝑐∗, ¬𝑑∗},

∙ 𝑁4 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, 𝑐, 𝑑, 𝑐∗, 𝑑∗},

∙ 𝑁5 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, 𝑑∗, 𝑐, 𝑐∗, 𝑑, ¬𝑑∗},

∙ 𝑁6 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, 𝑑, 𝑑∗, 𝑐, 𝑐∗, ¬𝑑, ¬𝑑∗},

∙ 𝑁7 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, 𝑐∗, ¬𝑑, 𝑑∗, 𝑐, ¬𝑐∗, 𝑑, ¬𝑑∗},

∙ 𝑁8 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, 𝑐∗, 𝑑, 𝑑∗, 𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗},

∙ 𝑁9 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, 𝑐, 𝑐∗, 𝑑, 𝑑∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗}.

Moreover, as 𝑁0 ̸⊧ 𝜍∗ and 𝑁4, 𝑁5, 𝑁7 ̸⊧ 𝜍, the feasible models are 𝑁1, 𝑁2, 𝑁3, 𝑁6, 𝑁8, 𝑁9. Considering the satisfaction of weak 
constraints, we have that:

∙ 𝑁1 ⊧ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤∗
3},

∙ 𝑁2 ⊧ {𝑤1, 𝑤2, 𝑤3, 𝑤4},

∙ 𝑁3 ⊧ {𝑤1, 𝑤3, 𝑤4, 𝑤∗
1 , 𝑤

∗
3 , 𝑤

∗
4},

∙ 𝑁6 ⊧ {𝑤2, 𝑤3, 𝑤∗
2 , 𝑤

∗
3},

∙ 𝑁8 ⊧ {𝑤2, 𝑤3, 𝑤∗
2},

∙ 𝑁9 ⊧ {𝑤2, 𝑤∗
2}.

Therefore, the best models are 𝑁1 , 𝑁3 and 𝑁6. Comparing the best models of 𝑇 (𝑃 ∗) with the stable model of 𝑃 (see Example 11) 
we have 𝑁1[𝑃 ] = 𝑀1, 𝑁3[𝑃 ] = 𝑀2 and 𝑁6[𝑃 ] = 𝑀3. □

Appendix D. Abstract argumentation framework with epistemic constraints

We now review the Epistemic Argumentation Framework [89], which extends Dungs’ framework with epistemic constraints, and 
then show a relationship with the framework proposed in this paper.

D.1. Labelling

Argumentation semantics can be also defined in terms of labelling [21]. A labelling for an AF ⟨, ⟩ is a total function 𝐿𝑎𝑏 ∶ →
{𝐢𝐧, 𝐨𝐮𝐭, 𝐮𝐧𝐝𝐞𝐜} assigning to each argument a label: 𝐿𝑎𝑏(𝑎) = 𝐢𝐧 means that 𝑎 is accepted, 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 means that 𝑎 is rejected, and 
𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜 means that 𝑎 is undecided.

Let 𝐢𝐧(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐢𝐧}, 𝐨𝐮𝐭(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭}, and 𝐮𝐧𝐝𝐞𝐜(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜}, 
a labelling 𝐿𝑎𝑏 can be represented by means of a triple ⟨𝐢𝐧(𝐿𝑎𝑏), 𝐨𝐮𝐭(𝐿𝑎𝑏), 𝐮𝐧𝐝𝐞𝐜(𝐿𝑎𝑏)⟩.

Given an AF Λ = ⟨, ⟩, a labelling 𝐿𝑎𝑏 for  is said to be conflict-free if there are no two arguments 𝑎, 𝑏 ∈ 𝐢𝐧(𝐿𝑎𝑏) such that 
(𝑎, 𝑏) ∈, and admissible (or legal) if ∀𝑎 ∈ 𝐢𝐧(𝐿𝑎𝑏) ∪ 𝐨𝐮𝐭(𝐿𝑎𝑏) it holds that:

(i) 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 iff ∃ (𝑏, 𝑎) ∈ such that 𝐿𝑎𝑏(𝑏) = 𝐢𝐧; and

(ii) 𝐿𝑎𝑏(𝑎) = 𝐢𝐧 iff ∀(𝑏, 𝑎) ∈, 𝐿𝑎𝑏(𝑏) = 𝐨𝐮𝐭 holds.

Moreover, 𝐿𝑎𝑏 is a complete labelling iff conditions (i) and (ii) hold for all arguments 𝑎 ∈.

Between complete extensions and complete labellings there is a bijective mapping defined as follows: for each extension 𝐸 there 
is a unique labelling 𝐿𝑎𝑏(𝐸) = ⟨𝐸, 𝐷𝑒𝑓 (𝐸),  ⧵ (𝐸 ∪𝐷𝑒𝑓 (𝐸))⟩ and for each labelling 𝐿𝑎𝑏 there is a unique extension, that is 𝐢𝐧(𝐿𝑎𝑏). 
We say that 𝐿𝑎𝑏(𝐸) is the labelling corresponding to 𝐸. Moreover, we say that 𝐿𝑎𝑏(𝐸) is an  -labelling for a given AF Λ and semantics 
 ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜, 𝚐𝚛} iff 𝐸 is an  -extension of Λ.

We say that the status of an argument 𝑎 w.r.t. a labelling 𝐿𝑎𝑏 (or its corresponding extension 𝐢𝐧(𝐿𝑎𝑏)) is 𝐢𝐧 (resp. 𝐨𝐮𝐭 , 𝐮𝐧𝐝𝐞𝐜) iff 
𝐿𝑎𝑏(𝑎) = 𝐢𝐧 (resp. 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 , 𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜). We will avoid to mention explicitly the labelling (or the extension) whenever it is 
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D.2. AF with epistemic constraints

Given an AF Λ = ⟨, ⟩, an epistemic atom over Λ is of the form K𝜑 or M𝜑, where 𝜑 is a propositional formula built from 
𝜆𝐴 = {𝐢𝐧(𝑎), 𝐨𝐮𝐭(𝑎), 𝐮𝐧𝐝𝐞𝐜(𝑎) ∣ 𝑎 ∈} by using the connectives ¬, ∨, and ∧. An epistemic literal is an epistemic atom or its negation. 
An epistemic formula (over 𝜆𝐴) is a propositional formula constructed over epistemic literals and connectives ∧ and ∨. Intuitively, K𝜑

(resp. M𝜑) means that the considered agent believes that 𝜑 is always true (resp. 𝜑 is possibly true).

A labelling 𝐿𝑎𝑏 satisfies a formula 𝜑 (denoted as 𝐿𝑎𝑏 ⊧ 𝜑) if the formula obtained from 𝜑 by replacing every atom occurring in 
𝐿𝑎𝑏 with 𝚝 (𝚝𝚛𝚞𝚎), and every atom not occurring in 𝐿𝑎𝑏 with 𝚏 (𝚏𝚊𝚕𝚜𝚎), evaluates to true.

A set 𝑆𝐿 of labellings satisfies an epistemic formula 𝜑, denoted as 𝑆𝐿 ⊧ 𝜑, if one of the following conditions holds:

∙ 𝜑 = 𝚝,

∙ 𝜑 =𝐊𝜓 and 𝐿𝑎𝑏 ⊧ 𝜓 for every 𝐿𝑎𝑏 ∈ 𝑆𝐿,

∙ 𝜑 =𝐌𝜓 and 𝐿𝑎𝑏 ⊧ 𝜓 for some 𝐿𝑎𝑏 ∈ 𝑆𝐿,

∙ 𝜑 = ¬𝜓 and 𝑆𝐿 ̸⊧ 𝜓 ,

∙ 𝜑 = 𝜑1 ∧𝜑2 and (𝑆𝐿 ⊧ 𝜑1 and 𝑆𝐿 ⊧ 𝜑2),

∙ 𝜑 = 𝜑1 ∨𝜑2 and (𝑆𝐿 ⊧ 𝜑1 or 𝑆𝐿 ⊧ 𝜑2).

An epistemic formula 𝜑 is consistent if there exists a (non-empty) set 𝑆𝐿 of labellings such that 𝑆𝐿 ⊧ 𝜑; otherwise, 𝜑 is inconsis-

tent. The following basic properties hold:

∙ 𝑆𝐿 ⊧ ¬𝐌𝜑 iff 𝑆𝐿 ⊧ 𝐊¬𝜑,

∙ 𝑆𝐿 ⊧ ¬𝐊𝜑 iff 𝑆𝐿 ⊧ 𝐌¬𝜑,

∙ 𝑆𝐿 ⊧ 𝐌(𝜑1 ∨𝜑2) iff 𝑆𝐿 ⊧ 𝐌𝜑1 ∨ 𝑆𝐿 ⊧ 𝐌𝜑2,

∙ 𝑆𝐿 ⊧ 𝐊(𝜑1 ∧𝜑2) iff 𝑆𝐿 ⊧ 𝐊𝜑1 ∧ 𝑆𝐿 ⊧ 𝐊𝜑2.

Definition 18 (EAF Syntax). An Epistemic AF (EAF) is a triple ⟨, , 𝜑⟩ where ⟨, ⟩ is an AF and 𝜑 is an epistemic formula to be 
satisfied, also called epistemic constraint.

The semantics of EAF relies on the concept of  -epistemic labelling, that is a maximal set of labellings of the underlying AF 
satisfying the epistemic constraint.

Definition 19 (EAF Semantics). Let  = ⟨, , 𝜑⟩ be an EAF and  ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝} a semantics. A set 𝑆𝐿 of labellings is an 
 -epistemic labelling set of  if (i) each 𝐿𝑎𝑏 ∈ 𝑆𝐿 is an  -labelling of ⟨, ⟩, and (ii) 𝑆𝐿 is a ⊆-maximal set of  -labellings of ⟨, ⟩
that satisfies 𝜑.

An EAF may have multiple  -epistemic labelling sets. In fact, an  -epistemic labelling set is a collection of  -labellings that 
represent the belief of an agent. In particular, EAF  = ⟨, , K𝚝⟩ has a unique  -epistemic labelling set that coincides with the set 
of  -labellings of the underlying AF. By definition, an EAF always has a (possibly empty)  -epistemic labelling set.

D.3. AF with labelled constraints

An EAF is called Labelled CAF (LabCAF) if it is of the form ⟨, , K 𝜑⟩, where 𝜑 is a propositional formula built from Λ and 
using the operators ∧, ∨ and ¬. Any LabCAF ⟨, , K𝜑⟩ has a unique labelling set which consists of the set of  -extensions for ⟨, ⟩
satisfying 𝜑.

Theorem 11. Let  = ⟨, , K𝜑⟩ be an LabCAF,  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛} a semantics and 𝑆𝐿 the unique set of  -labellings for  . Then, 
there exist a CAF Ω = ⟨, , ⟩ such that  can be derived from 𝜑 in linear time and 𝑆𝐿 = (Ω).

Proof. Let  = ⟨, , K𝜑⟩ be an LabCAF, and Ω = ⟨, , ⟩ where  = 𝜑′ is obtained as follows. Any atom 𝐢𝐧(𝑥) ∈ 𝜑 is replaced 
with (𝚝⇒ 𝑥), 𝐨𝐮𝐭(𝑥) ∈ 𝜑 is replaced with (𝑥 ⇒ 𝚏), and any atom 𝐮𝐧𝐝𝐞𝐜(𝑥) ∈ 𝜑 is replaced with (𝚞⇒ 𝑥 ∧ ¬𝑥). Observe that  = 𝜑′ is 
built in linear time w.r.t. 𝜑.

We now prove that 𝐸 ∈ 𝑆𝐿 iff 𝐸 ∈ (Ω). For any atom 𝐢𝐧(𝑥) ∈ 𝜑, we have that 𝐢𝐧(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ 𝐸, implying that 𝚝⇒ 𝑥

is true iff 𝑥 ∈ 𝐸. Analogously, for any atom 𝐨𝐮𝐭(𝑥) ∈ 𝜑, we have that 𝐨𝐮𝐭(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ 𝐷𝑒𝑓 (𝐸), implying that 𝑥 ⇒ 𝚏 is true 
iff 𝑥 ∈ 𝐷𝑒𝑓 (𝐸). Assume now that we have an atom 𝐮𝐧𝐝𝐞𝐜(𝑥) ∈ 𝜑. We have that 𝐮𝐧𝐝𝐞𝐜(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ ⧵ (𝐸 ∪ 𝐷𝑒𝑓 (𝐸)). 
This implies that 𝚞⇒ 𝑥 ∧ ¬𝑥 is true iff 𝑥 ∈ ⧵ (𝐸 ∪𝐷𝑒𝑓 (𝐸)) or the consequent (𝑥 ∧ ¬𝑥) is true. As the latter is a contradiction, we 
have that 𝐮𝐧𝐝𝐞𝐜(𝑥) is true w.r.t. 𝐸 implies that 𝚞⇒ 𝑥 ∧ ¬𝑥 is true w.r.t. 𝐸. As the inverse direction holds by reasoning analogously, 
we showed that 𝐸 ∈ 𝑆𝐿 iff 𝐸 ∈ (Ω). □

Therefore, CAF is at least expressive as LabCAF.

Appendix E. Background on ADF

In this appendix, we review the syntax and the semantics of the ADF framework. An Abstract Dialectical Framework (ADF) [36] is 
31

a triple 𝐷 = ⟨𝑆, 𝐿, 𝐶⟩ where:
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• 𝑆 is a set of statements (also called arguments or nodes);
• 𝐿 ⊆ 𝑆 ×𝑆 is a set of links;
• 𝐶 = {𝐶𝑠}𝑠∈𝑆 is a set of total functions 𝐶𝑠 ∶ 2𝑝𝑎𝑟(𝑠) → {𝚝, 𝚏}, one for each statement, where 𝑝𝑎𝑟(𝑠) = {𝑥 | 𝑥 ∈ 𝑆 ∧ (𝑥, 𝑠) ∈ 𝐿}. 𝐶𝑠 is 

called acceptance condition of 𝑠.

Here, links in 𝐿 represent dependencies: the status of a node 𝑠 depends only on the status of its parents, 𝑝𝑎𝑟(𝑠), the nodes with a 
direct link to 𝑠. Each node 𝑠 is associated with an acceptance condition 𝐶𝑠 that specifies the conditions under which 𝑠 is acceptable. 
Acceptance conditions are represented by a collection {𝐶𝑠}𝑠∈𝑆 of propositional formulae, using atoms from 𝑝𝑎𝑟(𝑠) and the logical 
connectives ∧, ∨, ¬. Observe that we could assume that 𝐿 is understood and simply denote an ADF by a pair ⟨𝑆, 𝐶⟩ (instead of a 
triple).

Semantics assign to ADFs a collection of (3-valued) interpretations mapping each statement to truth values {𝚝, 𝚏, 𝚞}, denoting 
true, false, and undefined, respectively. Truth values are partially ordered by ≤𝑖 according to their information content: 𝚞 <𝑖 𝚝 and 
𝚞 <𝑖 𝚏 and no other pair is in ≤𝑖. The information ordering ≤𝑖 extends in a straightforward way to interpretations 𝜈1, 𝜈2 over 𝑆 in 
that 𝜈1 ≤𝑖 𝜈2 iff 𝜈1(𝑠) ≤𝑖 𝜈2(𝑠) for all 𝑠 ∈ 𝑆 . An interpretation 𝜈 is 2-valued if all statements are mapped to 𝚝 or 𝚏. For interpretations 
𝜈 and 𝜔, we say that 𝜔 extends 𝜈 iff 𝜈 ≤𝑖 𝜔. We denote by [𝜈]2 the set of all completions of 𝜈, that is, 2-valued interpretations that 
extend 𝜈. For an ADF 𝐷 = ⟨𝑆, 𝐶⟩, 𝑠 ∈ 𝑆 , and an interpretation 𝜈, the characteristic function is Γ𝐷(𝜈) = 𝜈′, where

𝜈′(𝑠) =
⎧⎪⎨⎪⎩
𝚝 if 𝜔(𝐶𝑠) = 𝚝 for all 𝜔 ∈ [𝜈]2
𝚏 if 𝜔(𝐶𝑠) = 𝚏 for all 𝜔 ∈ [𝜈]2
𝚞 otherwise

That is, operator Γ𝐷 returns an interpretation mapping a statement 𝑠 to 𝚝 (resp., 𝚏) iff all 2-valued interpretations extending 𝜈
evaluate 𝐶𝑠 to 𝚝 (resp., 𝚏). Intuitively, Γ𝐷 checks if truth values can be justified based on the information in 𝜈 and the acceptance 
conditions. Note that Γ𝐷 is defined on 3-valued interpretations, while acceptance conditions are evaluated under their 2-valued 
completions. Given an ADF 𝐷 = ⟨𝑆, 𝐶⟩, an interpretation 𝜈 is (w.r.t. 𝐷):

• admissible, if 𝜈 ≤𝑖 Γ𝐷(𝜈);
• complete, if 𝜈 = Γ𝐷(𝜈);
• preferred, if 𝜈 is ⊆-maximal admissible w.r.t. ≤𝑖;

• grounded, if 𝜈 is complete and there is no other complete interpretation 𝜈′ such that 𝜈′ ≤𝑖 𝜈.

A 2-valued interpretation 𝜈 is a model of 𝐷 if 𝜈(𝑠) = 𝜈(𝐶𝑠) for every 𝑠 ∈ 𝑆 . The definition of the stable semantics for ADFs is inspired by 
the stable semantics for logic programs: its purpose is to disallow cyclic supports within a model. In particular, (𝑖) to be a stable model 
of 𝐷, 𝜈 needs to be a model of 𝐷, and (𝑖𝑖) 𝑆𝜈 = {𝑠 ∈ 𝑆 | 𝜈(𝑠) = 𝚝} must equal the statements set to true in the grounded interpretation 
of the reduced ADF 𝐷𝜈 = ⟨𝑆𝜈, {𝐶𝜈

𝑠
}𝑠∈𝑆𝜈 ⟩, where for 𝑠 ∈ 𝑆𝜈 we set 𝐶𝜈

𝑠
= 𝐶𝑠[𝑏∕𝚏 | 𝜈(𝑏) = 𝚏]. If 𝜈⇂𝑆𝜈 is the interpretation 𝜈 projected 

on 𝑆𝜈 , that is, 𝜈⇂𝑆𝜈 (𝑠) = 𝜈(𝑠) for 𝑠 ∈ 𝑆𝜈 and undefined otherwise, then the latter amounts to the fact that 𝜈⇂𝑆𝜈 be the grounded 
interpretation of 𝐷𝜈 .

As shown in [36], these semantics generalize the corresponding ones defined for AF.

Example 16. [33] For the ADF 𝐷 = ⟨{𝑎, 𝑏, 𝑐}, {𝐶𝑎 = 𝑏 ∨ ¬𝑏, 𝐶𝑏 = 𝑏, 𝐶𝑐 = ¬𝑐 ∨ 𝑏}⟩,9 the complete interpretations are 𝑀0 = {𝑎} (𝑏 and 𝑐
are undefined), 𝑀1 = {𝑎, ¬𝑏} (𝑐 is undefined) and 𝑀2 = {𝑎, 𝑏, 𝑐}. 𝑀0 is the grounded interpretation, while 𝑀1 and 𝑀2 are preferred. 
Only 𝑀2 is a model. There is no stable model. □
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