
Artificial Intelligence 336 (2024) 104205

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Abstract argumentation frameworks with strong and weak

constraints ✩

Gianvincenzo Alfano ∗, Sergio Greco, Domenico Mandaglio, Francesco Parisi,
Irina Trubitsyna
Department of Informatics, Modeling, Electronics and System Engineering, University of Calabria, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Formal argumentation

Hard constraints

Soft constraints

Dealing with controversial information is an important issue in several application contexts.
Formal argumentation enables reasoning on arguments for and against a claim to decide on an
outcome. Dung’s abstract Argumentation Framework (AF) has emerged as a central formalism
in argument-based reasoning. Key aspects of the success and popularity of Dung’s framework
include its simplicity and expressiveness. Integrity constraints help to express domain knowledge
in a compact and natural way, thus keeping easy the modeling task even for problems that
otherwise would be hard to encode within an AF. In this paper, we first explore two intuitive
semantics based on Kleene and Lukasiewicz logics, respectively, for AF augmented with (strong)
constraints—the resulting argumentation framework is called Constrained AF (CAF). Then, we
propose a new argumentation framework called Weak constrained AF (WAF) that enhances CAF
with weak constraints. Intuitively, these constraints can be used to find “optimal” solutions to
problems defined through CAF. We provide a detailed complexity analysis of CAF and WAF,
showing that strong constraints do not increase the expressive power of AF in most cases, while
weak constraints systematically increase the expressive power of CAF (and AF) under several well-

known argumentation semantics.

1. Introduction

Argumentation is a well-known human process used in our daily life to explain something, persuade people, derive conclusions,
and in general it is fundamental during debates. Most of the situations where argumentation takes place are inherently characterized
by the presence of controversial information. Enabling automated systems to process such kind of information, much in the same
way as organized human discussions are carried out, is an important challenge that has deserved increasing attention from the
Artificial Intelligence community in the last decades. This has led to the development of an important and active research area called
formal argumentation [22,63], that has been explored in several application contexts, e.g., legal reasoning [19], decision support
systems [12], E-Democracy [26], healthcare [91], medical applications [72], financial analysis [84], explanation of results [30], as
well as multi-agent systems and social networks [73].

✩ This paper is a substantially revised and expanded version of [5].

* Corresponding author.

E-mail addresses: g.alfano@dimes.unical.it (G. Alfano), greco@dimes.unical.it (S. Greco), d.mandaglio@dimes.unical.it (D. Mandaglio), fparisi@dimes.unical.it
Available online 20 August 2024
0004-3702/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

(F. Parisi), i.trubitsyna@dimes.unical.it (I. Trubitsyna).

https://doi.org/10.1016/j.artint.2024.104205

Received 22 December 2023; Received in revised form 30 July 2024; Accepted 12 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:g.alfano@dimes.unical.it
mailto:greco@dimes.unical.it
mailto:d.mandaglio@dimes.unical.it
mailto:fparisi@dimes.unical.it
mailto:i.trubitsyna@dimes.unical.it
https://doi.org/10.1016/j.artint.2024.104205
https://doi.org/10.1016/j.artint.2024.104205
http://creativecommons.org/licenses/by/4.0/

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 1. (a) AF Λ of Example 1; (b) AF Λ′ of Example 3.

Dung’s abstract Argumentation Framework (AF) has emerged as a central formalism for modelling disputes between two or more
agents [48]. An AF consists of a set of arguments and a binary attack relation over the set of arguments that specifies conflicts between
arguments (if argument 𝑎 attacks argument 𝑏, then 𝑏 is acceptable only if 𝑎 is not). Hence, arguments are abstract entities whose role
is determined by attacks. We can think of an AF as a directed graph whose nodes represent arguments and edges represent attacks. As
for graph theory, an important aspect of the success of Dung’s framework is that it is a simple yet powerful formalism. The meaning
of an AF is given in terms of argumentation semantics, which intuitively tell us the sets of arguments (called extensions) that can
collectively be accepted to support a point of view in a dispute.

Despite the expressive power and generality of AFs, in some cases it is difficult to accurately model domain knowledge by an AF in
a natural and easy-to-understand way. For this reason, Dung’s framework has been extended by the introduction of further constructs,
such as preferences [10,79,69,6,7] and integrity constraints [41,17], to achieve more comprehensive, natural, and compact ways of
representing useful relationships among arguments. In particular, enhancing AF with constraints allows us to naturally and compactly
express domain conditions that need to be taken into account to filter out unfeasible solutions, as illustrated in the following example.

Example 1. Albert, Betty and Charlie wish to attend a basketball game on Saturday evening, but only two tickets are available. In
an attempt to model this situation by an AF Λ, the following six arguments can be used: 𝑎 (resp., 𝑏, 𝑐) states that Albert (resp.,
Betty, Charlie) attends the game, whereas 𝑎̄ (resp., 𝑏̄, 𝑐) states that Albert (resp., Betty, Charlie) does not attend the game. The direct
graph encoding Λ is shown in Fig. 1(a), where double arrows are used to represent mutually attacks between arguments. Specifically,
argument 𝑎 (resp., 𝑏, 𝑐) attacks and is attacked by argument 𝑎̄ (resp., 𝑏̄, 𝑐), i.e., only one of them can be accepted. Moreover, argument
𝑎̄ (resp., 𝑏̄, 𝑐) is attacked by the other two arguments 𝑏̄ and 𝑐 (resp., 𝑎̄ and 𝑐; 𝑎̄ and 𝑏̄) since the argument that Albert (resp., Betty,
Charlie) attends the game can be accepted only if one of the arguments stating that Betty or Charlie (resp., Albert or Charlie; Albert
or Betty) do not attend the game is accepted. Thus, the set of attacks between every pair in {𝑎̄, ̄𝑏, 𝑐} models the fact that at most one
argument among 𝑎̄, 𝑏̄ and 𝑐 can be accepted and then, as a consequence, at least two arguments among 𝑎, 𝑏 and 𝑐 can be accepted,
i.e., all available tickets are sold.

The extensions of the AF Λ under the well-known preferred and stable semantics are 𝐸1 = {𝑎, 𝑏, 𝑐}, 𝐸2 = {𝑎, ̄𝑏, 𝑐}, 𝐸3 = {𝑎̄, 𝑏, 𝑐},
and 𝐸4 = {𝑎, 𝑏, 𝑐}, where the presence of an argument in one of the 4 solutions means that it is accepted. However, the AF Λ fails to
capture the knowledge we want to represent due to the presence of extension 𝐸4, which admits that three people attend the game,
while only two tickets are available. □

With the aim of allowing for a more straightforward and compact encoding of knowledge, several frameworks extending AF
have been proposed, such as Abstract Dialectical Framework (ADF) [36,92,33,24] and SETAF [80,62,54,55], where the situation of
Example 1 can be modeled by using proper acceptance conditions over arguments or collective attacks, respectively (see Section 9 for
a detailed discussion). Moreover, to overcome situations similar to that of Example 1, and thus providing a natural and compact
way for expressing such kind of conditions, the use of constraints to filter extensions has been proposed. Considering our example, a
constraint 𝜅 defined as

𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏

can be used. It states that the propositional formula 𝑎 ∧ 𝑏 ∧ 𝑐 must be false. That is, feasible solutions must satisfy the condition that
the 3 arguments 𝑎, 𝑏, and 𝑐 are not jointly accepted, i.e., Albert, Betty and Charlie cannot attend the game together. The effect of
using constraint 𝜅 is that 𝐸4 is discarded from the set of solutions of our problem.

The use of constraints in AF has been firstly proposed in [41] and then further investigated in [16–18]. The constrained argumen-

tation frameworks in [16] and [18] are particular cases of those in [17] as the set of constraints is restricted to atomic formulae only.
We call an AF with constraints a Constrained AF (CAF).

Although constraints in CAF allow restricting the set of feasible solutions, they do not help in finding “best” or preferable solutions.
Considering our running example, Albert, Betty and Charlie may agree on the fact that “if there are only two tickets available then Albert
and Betty should preferably attend the game”. To express this kind of conditions, in this paper we introduce weak constraints, that is,
constraints that are required to be satisfied if possible. Syntactically, weak constraints have the same form of the above-mentioned
kind of constraints, that we call strong constraints. Intuitively, weak constraints can be used to find “optimal” solutions to a problem
defined by means of an AF or a CAF, that is to filter out, from the set of feasible extensions of a given AF or CAF, the extensions which
satisfy a maximal set (or a maximum number) of weak constraints.

A CAF with the addition of weak constraints is said to be a Weak constrained Argumentation Framework (WAF).

Example 2. Consider a WAF obtained by adding to the AF of Example 1 the constraint 𝜅 and the weak constraint 𝑤 = 𝚝 ⇒ 𝑎 ∧ 𝑏,
2

stating that is desirable that Albert and Betty attend the game together. Herein, 𝚝 denotes the truth value 𝚝𝚛𝚞𝚎. Then, the extension

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

𝐸1 = {𝑎, 𝑏, 𝑐} is selected as the “best” one as it is the only one that satisfies the constraint 𝑤 asking for the presence of arguments 𝑎
and 𝑏. □

Weak constraints (also called relaxed constraints in some contexts) have been considered in several research areas, including
Mathematical Programming with Equilibrium Constraints [86], Answer Set Programming [37,66], (weighted) Max-Sat [74], and for
modelling and solving optimization problems [60]. In particular, concerning the field of Answer Set Programming, weak constraints
have been implemented in DLV [9], a disjunctive logic programming system with (total) stable models semantics.

The use of strong and weak constraints substantially reduces the effort needed to figure out how to define an AF that models a
given problem. In fact, as said before, constraints facilitate to express knowledge in a more compact and easy to understand way. For
instance, the problem presented in Example 1, has been represented through an AF which expresses the condition that “at most one
argument among 𝑎̄, 𝑏̄ and 𝑐 can be accepted” and then, as a consequence, at least two arguments among 𝑎, 𝑏 and 𝑐 can be accepted.
However, this condition is not easy to be generalized if we have more than three people. Suppose there is a fourth person, David, who
wishes to attend the game, and there are again only two available tickets. After adding the arguments 𝑑 (David attends the game)
and 𝑑 (David does not attend the game) to AF Λ of Fig. 1(a), we cannot use the same reasoning as in Example 1 to model the fact
that two of the four people attend the game. In fact, having the attacks between every pair in {𝑎̄, ̄𝑏, 𝑐, 𝑑} does not model this situation
(it models that at least three of the four people attend the game). Remarkably, using strong and weak constraints allow for using a
common reasoning pattern to generalize to this more complex situation, even starting from an AF having a simpler structure.

Example 3. Consider a WAF consisting of AF Λ′ of Fig. 1(b) and the following sets,  and  , of strong and weak constraints,
respectively:

 = { 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏, 𝑎 ∧ 𝑏 ∧ 𝑑 ⇒ 𝚏, 𝑎 ∧ 𝑐 ∧ 𝑑 ⇒ 𝚏, 𝑏 ∧ 𝑐 ∧ 𝑑 ⇒ 𝚏 };
 = { 𝚝⇒𝑎, 𝚝⇒𝑏, 𝚝⇒ 𝑐, 𝚝⇒𝑑 }.

The strong constraints in  (that includes 𝜅 of Example 1) filter out from the (16 preferred) extensions of Λ′ the solutions where
more than two people attend the game, whereas the weak constraints maximize the set (or number) of people attending the game
since the “best” extensions are those that satisfy the maximal set (or number) of weak constraints, each asking for the presence of a
person. □

It is worth mentioning that, although in this paper we consider ground constraints, the proposed framework can be easily extended
to more general formulae with variables denoting arguments, whose ground version is a propositional formula. For instance, the
strong and weak constraints in Example 3 could be written by using only one strong constraint of the form 𝑋 ∧ 𝑌 ∧ 𝑍 ∧ (𝑖𝑑(𝑋) ≠
𝑖𝑑(𝑌)) ∧ (𝑖𝑑(𝑋) ≠ 𝑖𝑑(𝑍)) ∧ (𝑖𝑑(𝑌) ≠ 𝑖𝑑(𝑍)) ⇒ 𝚏 and only one weak constraint 𝚝⇒𝑋, where 𝑋, 𝑌 and 𝑍 are variables whose domain
is the set of arguments, and 𝑖𝑑(𝑋) denotes the identifier of the argument associated to 𝑋 (e.g. the pointer to the object).

1.1. Contributions

In this paper, after introducing CAF and WAF, we investigate the complexity of both credulous and skeptical reasoning in these
argumentation frameworks. Credulous and skeptical reasoning are well-known approaches to deal with uncertain information rep-

resented by the presence of multiple solutions. In our context, an argument is credulously accepted if there exists a solution (i.e.,
an extension of the considered framework) containing that argument, whereas an argument is skeptically accepted if it occurs in all
solutions.

We provide the complexity results that are summarized in Tables 1 and 2 (reported at the end of Section 5), where 𝐶𝐴 (resp., 𝑆𝐴)
denotes the credulous (resp., skeptical) acceptance problem under one of the following argumentation semantics  : complete (𝚌𝚘),
stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝). Moreover, since we will consider two alternative 3-valued logics for interpreting
the constraints, that is, Kleene logic and Lukasiewicz logic, in the above-mentioned tables we also use the notations 𝐶𝐴𝜎


(resp., 𝑆𝐴𝜎


)

to denote the credulous (resp., skeptical) acceptance problem under semantics  and logic interpretation 𝜎; herein, 𝜎 = 𝐾 (resp.,
𝜎 = 𝐿; 𝜎 =∗) denotes Kleene (resp., Lukasiewicz; either Kleene or Lukasiewicz) logic interpretation of the constraints.

More in detail, we make the following main contributions.

• We propose the CAF framework by relying on a simple yet expressive form of constraints that are interpreted using either Kleene
or Lukasiewicz logic, leading to intuitive constraints’ semantics.

• We investigate the complexity of 𝐶𝐴𝜎


and 𝑆𝐴𝜎


for CAF under four popular semantics, showing that it remains the same as for
AF in all cases except the cases of i) credulous acceptance under preferred semantics and Lukasiewicz logic, and ii) skeptical
acceptance under stable semantics (irrespective of the logic considered for interpreting the constraints), where the complexity
increases of one level in the polynomial hierarchy.

• We introduce the WAF framework and propose two criteria for interpreting weak constraints, under any argumentation semantics
 : maximal-set (𝚖𝚜) and maximum-cardinality (𝚖𝚌) according to which the best/optimal  -extensions are those satisfying a
maximal set, or a maximum number, of weak constraints, respectively.

• We investigate the complexity of the credulous and skeptical acceptance problems for WAF, where they are denoted as 𝐶𝐴𝜎
𝚖𝚜 and
3

𝑆𝐴𝜎
𝚖𝚜 , and 𝐶𝐴𝜎

𝚖𝚌 and 𝑆𝐴𝜎
𝚖𝚌 , respectively, depending on the considered criterion (maximal-set or maximum-cardinality) adopted

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

for interpreting the weak constraints (with 𝜎 ∈ {𝐾, 𝐿}). We show that, differently from strong constraints, the introduction of
weak constraints typically increases the complexity of the considered problems of one level in the polynomial hierarchy.

• We introduce Stratified WAF (SWAF) and investigate a restriction of SWAF, called Linear WAF (LWAF), where constraints are
linearly ordered. It turns out that, in most cases WAF and SWAF have the same complexity under maximal-set semantics, while
WAF are in general less expressive than SWAF under maximum-cardinality semantics. Moreover, for LWAF the maximal-set and
maximum-cardinality semantics coincide, thus we simply use the notations 𝐶𝐴𝜎


and 𝑆𝐴𝜎


(with 𝜎 ∈ {𝐾, 𝐿}) for denoting the

credulous and skeptical acceptance, respectively. For LWAF, the complexity of 𝐶𝐴𝜎


and 𝑆𝐴𝜎


generally decreases w.r.t. that of
WAF under maximal-set semantics, though it is higher than that of CAF and that of WAF under maximum-cardinality semantics.

• Finally, we investigate the case of NCAF and NWAF, that is, CAF and WAF, respectively, where constraints are expressed by
negative constraints, i.e., denials constraints whose body is a conjunction of literals (used in several contexts such as databases
and logic programming), and show that the complexity of 𝐶𝐴∗


for the preferred semantics decreases (irrespective of the logic

considered for interpreting the constraints).

This paper refines and substantially extends the work in [5]. In particular, we have extended the form of constraints considered,
which are defined through formulae of one of the two forms 𝜑 ⇒ 𝑣 and 𝑣 ⇒ 𝜑, where 𝑣 is a truth value (𝚏, 𝚞, 𝚝) and 𝜑 is a first
order formula built over the alphabet of arguments. The formula 𝜑 can now also contain the implication ⇒ (which is a primitive
operator in the Lukasiewicz logic) and equivalence ⇔ operators, whereas in [5] 𝜑 could be built by using the ∧, ∨ and ¬ operators
only. We investigate CAF, WAF, SWAF, LWAF and NWAF under two alternative 3-valued logics which differ in the interpretation of
the implication operator: Kleene logic and Lukasiewicz logic. In contrast, in [5] only Lukasiewicz logic is considered for interpreting
the constraints; moreover, the complexity of SWAF is not addressed at all in [5]. We provide tight complexity bounds and close a
gap left open in [5] for the complexity of the credulous acceptance problem in CAF (interestingly, although we provide a stronger
hardness result, our result holds even for the simpler form of constraints considered in [5]). Overall, we provide a detailed analysis
of AF with strong and weak constraints interpreted under Kleene or Lukasiewicz logic, with maximal-set and maximum-cardinality
interpretations of weak constraints, under four popular argumentation semantics, by also considering several restrictions on the forms
of the constraints: stratified, linearly ordered, and negative constraints. We also show that some preference-based AFs can be encoded
in WAF and that CAF (and thus WAF) is more expressive than LabCAF, that is a CAF framework where constraints are defined over
the alphabet of labelled arguments [21]. The new material includes all the proofs of the results stated in the core of the paper as well
as the proofs of useful auxiliary results stated in the appendix (it is worth mentioning that some of those results are of independent
interest, e.g., the mapping from DLPs to logic programs with weak constraints under maximal-set semantics, which entails that the
latter are no less expressive than DLPs, see Appendix C.1).

1.2. Organization

The rest of the paper is organized as follows. The abstract argumentation framework and the complexity classes used in the paper
are recalled in Section 2. In Section 3 we discuss the syntax and semantics of the forms of CAF presented in the literature, whereas in
Section 4 we introduce a simple yet expressive form of constraints that are interpreted under either Kleene or Lukasiewicz logic and
lead to the CAF frameworks on which we focus in this paper. This section also analyzes the computational complexity of the credulous
and skeptical acceptance problems in CAF. Next, in Section 5, we introduce WAF, which extends CAF through the introduction of weak
constraints, and formally define the meaning of WAF under the maximal-set and maximum-cardinality semantics, and investigate the
complexity of credulous and skeptical reasoning (Sections 5.1 and 5.2, respectively). In Section 6 we introduce SWAF and investigate
the computational complexity of SWAF and of the special case of LWAF, whereas in Section 7 we deal with the credulous and skeptical
acceptance for NCAF and NWAF. In Section 8, we discuss the relationship between WAF and preferences in AF, showing that some
preference-based AFs can be encoded in WAFs. Related work is discussed in Section 9, while in Section 10 conclusions are drawn and
directions for future work are outlined.

To ease readability, in the core of the paper we provide only the proofs regarding CAF (that is, the basic AF extension studied
in Section 4) as well as the proof concerning the encoding of PAF into WAF given in Section 8. All the other proofs concerning
the remaining results on WAF, SWAF, LWAF and NWAF are given in Appendix A. The paper also contains four further appendixes,
organized as follows. Since some proofs given in Appendix A rely on exploiting some results from disjunctive logic programming (DLP)
and logic programming with weak constraints (LPWC), to make the paper self-contained, Appendix B contains useful material on DLP,
whereas Appendix C introduces LPWC and its relationships with DLP and WAF. Moreover, in Appendix D, we show the relationship
between CAF (and thus WAF) and AF with labelled constraints (namely, LabCAF), which is a kind of Epistemic Argumentation
Framework [89] with a restricted modal operator. Finally, Appendix E briefly recalls the syntax and the semantics of the Abstract
Dialectical Framework (ADF) [36], whose relationship with CAF and WAF is discussed in Section 9.

2. Preliminaries

In this section, we briefly review Dung’s framework and some basic notions about computational complexity.

2.1. Argumentation framework

An abstract Argumentation Framework (AF) is a pair ⟨, ⟩, where  is a set of arguments and  ⊆  × is a set of attacks. If
4

(𝑎, 𝑏) ∈ then we say that 𝑎 attacks 𝑏.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 2. AF Λ of Example 4.

Given an AF Λ = ⟨, ⟩ and a set 𝑆 ⊆  of arguments, an argument 𝑎 ∈ is said to be i) defeated w.r.t. 𝑆 iff ∃𝑏 ∈ 𝑆 such that
(𝑏, 𝑎) ∈ , and ii) acceptable w.r.t. 𝑆 iff for every argument 𝑏 ∈  with (𝑏, 𝑎) ∈ , there is 𝑐 ∈ 𝑆 such that (𝑐, 𝑏) ∈ . The sets of
defeated and acceptable arguments w.r.t. 𝑆 are defined as follows (where Λ is fixed):

𝑖) 𝐷𝑒𝑓 (𝑆) = {𝑎 ∈ | ∃𝑏 ∈ 𝑆 . (𝑏, 𝑎) ∈};

𝑖𝑖) 𝐴𝑐𝑐(𝑆) = {𝑎 ∈ | ∀𝑏 ∈ . (𝑏, 𝑎) ∉ ∨ 𝑏 ∈ 𝐷𝑒𝑓 (𝑆)}.

Given an AF ⟨, ⟩, a set 𝑆⊆ of arguments is said to be:

• conflict-free iff 𝑆 ∩𝐷𝑒𝑓 (𝑆) = ∅;

• admissible iff it is conflict-free and 𝑆 ⊆ 𝐴𝑐𝑐(𝑆).

Different argumentation semantics have been proposed to characterize collectively acceptable sets of arguments, called exten-

sions [48,39]. Every extension is an admissible set satisfying additional conditions. Specifically, the complete, preferred, stable,
semi-stable, and grounded extensions of an AF are defined as follows.

Given an AF ⟨, ⟩, a set 𝑆 ⊆  is an extension called:

• complete (𝚌𝚘) iff it is an admissible set and 𝑆 = 𝐴𝑐𝑐(𝑆);
• preferred (𝚙𝚛) iff it is a maximal (w.r.t. ⊆) complete extension;

• stable (𝚜𝚝) iff it is a total preferred extension, i.e., a preferred extension such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) =;

• semi-stable (𝚜𝚜𝚝) iff it is a preferred extension such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) is maximal (w.r.t. ⊆);

• grounded (𝚐𝚛) iff it is the smallest (w.r.t. ⊆) complete extension.

Arguments occurring in an extension are said to be accepted, whereas arguments attacked by accepted arguments are said to be
rejected; remaining arguments are said to be undecided (w.r.t. the considered extension).

The set of complete (resp. preferred, stable, semi-stable, grounded) extensions of an AF Λ will be denoted by 𝚌𝚘(Λ) (resp. 𝚙𝚛(Λ),
𝚜𝚝(Λ), 𝚜𝚜(Λ), 𝚐𝚛(Λ)). It is well-known that the set of complete extensions forms a complete semilattice w.r.t. ⊆, where 𝚐𝚛(Λ) is
the meet element, whereas the greatest elements are the preferred extensions [48]. All the above-mentioned semantics except the
stable semantics admit at least one extension. The grounded semantics, that admits exactly one extension, is said to be a unique status

semantics, while the others are multiple status semantics. With a little abuse of notation, in the following we also use 𝚐𝚛(Λ) to denote
the grounded extension. For any AF Λ the following inclusion relations hold: i) 𝚜𝚝(Λ) ⊆ 𝚜𝚜(Λ) ⊆ 𝚙𝚛(Λ) ⊆ 𝚌𝚘(Λ), ii) 𝚐𝚛(Λ) ∈ 𝚌𝚘(Λ),
and iii) 𝚜𝚝(Λ) ≠ ∅ implies that 𝚜𝚝(Λ) = 𝚜𝚜(Λ).

Example 4. Let Λ = ⟨ = {𝑎, 𝑏, 𝑐},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑐)}⟩ be the AF shown in Fig. 2. AF Λ has three complete extensions:
𝐸1 = ∅, 𝐸2 = {𝑎}, 𝐸3 = {𝑏}. Moreover, the set of preferred extensions is {𝐸2, 𝐸3}, whereas the set of stable (and semi-stable) extensions
is {𝐸3}, and the grounded extension is 𝐸1. □

Credulous and skeptical acceptance Given an AF framework Λ, an argument 𝑎, and an argumentation semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝,
𝚐𝚛},

• the credulous acceptance problem, denoted as 𝐶𝐴 , is the problem of deciding whether argument 𝑎 is credulously accepted, that
is, deciding whether 𝑎 belongs to at least an  -extension of Λ.

• the skeptical acceptance problem, denoted as 𝑆𝐴 , is the problem of deciding whether argument 𝑎 is skeptically accepted, that
is, deciding whether 𝑎 belongs to every  -extension of Λ.

Clearly, for the grounded semantics, which admits exactly one extension, these problems become identical. The above-defined notions
of credulous and skeptical acceptance will be also used in the context of the frameworks extending AF discussed in the paper (e.g.,
CAF and WAF), that is, by ranging on extensions of those frameworks when checking for the presence of a given argument 𝑎 in any
or all extensions in the process of credulous and skeptical acceptance, respectively.

2.2. Complexity classes

We recall here the main complexity classes used in the paper and, in particular, the definition of the classes Σ𝑝

𝑘
, Π𝑝

𝑘
and Δ𝑝

𝑘
, with

𝑘 ≥ 0 (see e.g. [82]):
5

• Σ𝑝

0 = Π𝑝

0 = Δ𝑝

0 = 𝑃 ;

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• Σ𝑝

1 = 𝑁𝑃 and Π𝑝

1 = 𝑐𝑜𝑁𝑃 ;

• Δ𝑝

𝑘
=𝑃

Σ𝑝

𝑘−1 , Σ𝑝

𝑘
=𝑁𝑃

Σ𝑝

𝑘−1 , and Π𝑝

𝑘
=𝑐𝑜Σ𝑝

𝑘
, ∀𝑘 > 0.

Thus, 𝑃 𝐶 (resp., 𝑁𝑃 𝐶) denotes the class of problems that can be solved in polynomial time using an oracle in the class 𝐶 by a
deterministic (resp., non-deterministic) Turing machine. Θ𝑝

𝑘
denotes the subclass of Δ𝑝

𝑘
containing the problems that can be solved

in polynomial time by a deterministic Turing machine by performing a number of calls bounded by 𝑂(𝑙𝑜𝑔 𝑛) to an oracle in the class
Σ𝑝

𝑘−1, that is, Θ𝑝

𝑘
=Δ𝑝

𝑘
[𝑙𝑜𝑔 𝑛]. Under standard complexity-theoretic assumptions, we have that:

• Σ𝑝

𝑘
⊂ Θ𝑝

𝑘+1 ⊂ Δ𝑝

𝑘+1 ⊂ Σ𝑝

𝑘+1⊂𝑃𝑆𝑃𝐴𝐶𝐸 and

• Π𝑝

𝑘
⊂ Θ𝑝

𝑘+1 ⊂ Δ𝑝

𝑘+1 ⊂ Π𝑝

𝑘+1 ⊂ 𝑃𝑆𝑃𝐴𝐶𝐸.

For AF, the complexity of the credulous and skeptical acceptance problems has been investigated in [48] for the grounded se-

mantics, in [45] for the stable semantics, in [45,49] for the preferred semantics, and in [51,56] for the semi-stable semantics. These
results are thoroughly discussed in [53], and summarized in the second column of Tables 1 and 2.

3. Constrained argumentation frameworks

We review the Constrained Argumentation Framework (CAF) introduced in [41] and further investigated in [17].

We assume that, given a set of propositional symbols 𝑆 , 𝑆 denotes the propositional language defined in the usual inductive way
from 𝑆 using the built-in constants 𝚏, 𝚞, and 𝚝 denoting the truth values 𝚏𝚊𝚕𝚜𝚎, 𝚞𝚗𝚍𝚎𝚏 (undefined),1 and 𝚝𝚛𝚞𝚎, and the connectives
∧, ∨, ¬, ⇒ and ⇔.

Definition 1 (Constrained Argumentation Framework). A Constrained Argumentation Framework (CAF) is a triple Ω = ⟨, , ⟩ where ⟨, ⟩ is an AF and  is a set of propositional formulae built from .

3.1. CAF semantics

Given an AF ⟨, ⟩ and a conflict-free set 𝑆 ⊆ , the truth value of an argument 𝑎 ∈ w.r.t. 𝑆 is denoted by 𝜗𝜎
𝑆
(𝑎), where 𝜎

denotes the underlying 3-valued logic, or simply 𝜗𝜎 (𝑎) whenever 𝑆 is given, and is defined as follows:

𝜗𝜎(𝑎) =
⎧⎪⎨⎪⎩
𝚝𝚛𝚞𝚎 𝑖𝑓 𝑎 ∈ 𝑆

𝚏𝚊𝚕𝚜𝚎 𝑖𝑓 ∃ 𝑏 ∈ 𝑆 𝑠.𝑡. (𝑏, 𝑎) ∈

𝚞𝚗𝚍𝚎𝚏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Observe that, for a given (complete) extension 𝐸, 𝜗𝜎 (𝑎) is 𝚝𝚛𝚞𝚎 (resp., 𝚏𝚊𝚕𝚜𝚎, 𝚞𝚗𝚍𝚎𝚏) iff 𝑎 ∈ 𝐴𝑐𝑐(𝐸) (resp., 𝑎 ∈ 𝐷𝑒𝑓 (𝐸), 𝑎 ∈
 ⧵ (𝐴𝑐𝑐(𝐸) ∪𝐷𝑒𝑓 (𝐸))).

Assuming that ¬𝚞𝚗𝚍𝚎𝚏 = 𝚞𝚗𝚍𝚎𝚏, and the ordering on truth values 𝚏𝚊𝚕𝚜𝚎 < 𝚞𝚗𝚍𝚎𝚏 < 𝚝𝚛𝚞𝚎, using a 3-valued logic 𝜎 we have
that 𝜗𝜎 (𝜑 ∧𝜓) = 𝑚𝑖𝑛(𝜗𝜎(𝜑), 𝜗𝜎(𝜓)), 𝜗𝜎 (𝜑 ∨𝜓) = 𝑚𝑎𝑥(𝜗𝜎(𝜑), 𝜗𝜎(𝜓)) and 𝜗𝜎(¬𝑎) = ¬𝜗𝜎(𝑎). It is important to note that, regarding the
operator ⇒, there is no consensus on how its semantics should be defined. In the following, we first review the semantics proposed
in [41] and [17] (in Sections 3.1.1 and 3.1.2, respectively); the former relying on classical 2-valued semantics, the latter relying on
3-valued semantics. Then, we introduce new three-valued semantics based on Kleene’s logic and Lukasiewicz’s logic in Section 4.

After that we have defined the semantics of the implication operator ⇒, i.e. have fixed the underlying 3-valued logic, we can also
define the semantics of the equivalence operator ⇔ as follows: 𝜗𝜎 (𝜑 ⇔ 𝜓) = 𝜗𝜎(𝜙 ⇒ 𝜓) ∧ 𝜗𝜎(𝜓 ⇒ 𝜑). Moreover, we say that a given
set 𝑆 satisfies a set of constraints  (written 𝑆 ⊧ ) if 𝜗𝜎

(⋀
𝜑∈ 𝜑

)
= 𝚝𝚛𝚞𝚎. We also say that  is satisfiable, under a given logic 𝜎,

if there exists a set 𝑆 such that 𝑆 ⊧  according to 𝜎.

In the following, for the different semantics we redefine the evaluation function only for the cases where it differs from the generic
function 𝜗𝜎 previously discussed and for formulae using the implication operator.

3.1.1. Semantics of Coste-Marquis et al.

The semantics proposed in [41] is based on a (2-valued) evaluation of the truth value of an argument 𝑎 w.r.t. a given set 𝑆 of
arguments (denoted as 𝜗2

𝑆
(𝑎)), which is defined as follows:

𝜗2
𝑆
(𝑎) =

{
𝚝𝚛𝚞𝚎 𝑖𝑓 𝑎 ∈ 𝑆

𝚏𝚊𝚕𝚜𝚎 𝑖𝑓 𝑎 ∉ 𝑆

Recalling that under 2-valued interpretation 𝜑 ⇒ 𝜓 ≡ ¬𝜑 ∨𝜓 , we have that 𝜗2
𝑆
(𝜑 ⇒ 𝜓) = 𝜗2

𝑆
(¬𝜑 ∨𝜓).

1 As it will be clearer in the following, undefined (𝚞𝚗𝚍𝚎𝚏) is a third value (in addition to the two classical values used in Boolean logic) which intuitively means
6

neither true nor false.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 3. AF ⟨,⟩ underlying CAF Ω of Example 5.

Definition 2 (C-admissible set). Given a CAF Ω = ⟨, , ⟩ and a set 𝑆 ⊆ , 𝑆 is a 𝐶 -admissible set for Ω if and only if 𝑆 is an
admissible set for ⟨, ⟩ and 𝑆 ⊧ .

Example 5. As an example, consider the CAF Ω = ⟨, ,  = {𝑏 ⇒ 𝚏}⟩, where the AF ⟨ = {𝑎, 𝑏},  = {(𝑎, 𝑏), (𝑏, 𝑎)}⟩ is shown
in Fig. 3, and the three sets 𝑆0 = ∅, 𝑆1 = {𝑎}, and 𝑆2 = {𝑏}. We have that (𝑖) 𝜗2

𝑆0
(𝑎) = 𝜗2

𝑆0
(𝑏) = 𝚏𝚊𝚕𝚜𝚎, (𝑖𝑖) 𝜗2

𝑆1
(𝑎) = 𝚝𝚛𝚞𝚎 and

𝜗2
𝑆1
(𝑏) = 𝚏𝚊𝚕𝚜𝚎, (𝑖𝑖𝑖) 𝜗2

𝑆2
(𝑎) = 𝚏𝚊𝚕𝚜𝚎 and 𝜗2

𝑆2
(𝑏) = 𝚝𝚛𝚞𝚎. Therefore, 𝑆0 ⊧  and 𝑆1 ⊧ , meaning that they are -satisfiable, whereas

𝑆2 is not -satisfiable since 𝑆2 ̸⊧ . □

A constrained argumentation framework Ω = ⟨, , ⟩ is consistent when it has a 𝐶 -admissible set for Ω.

Definition 3 (Preferred/Stable C-extension). Let Ω = ⟨, , ⟩ be a CAF. A 𝐶 -admissible set 𝐸 ⊆  for Ω is

• a preferred 𝐶 -extension of Ω if and only if ∄ 𝐸′ ⊆  such that 𝐸 ⊂ 𝐸′ and 𝐸′ is 𝐶 -admissible for Ω;

• a stable 𝐶 extension if and only if it is a total preferred 𝐶 -extension.

A drawback of the semantics proposed in [41] is that in checking whether an extension 𝐸 satisfies a set of constraints it does not
distinguish between false and undefined arguments. Thus, a constraint of the form 𝑎 ∧ ¬𝑎 ⇒ 𝚏 is always satisfied, even if the truth
value of 𝑎 would be undefined w.r.t. a 3-valued logic.

3.1.2. Arieli’s semantics

The semantics proposed in [17] for checking constraints’ satisfaction assumes a 3-valued interpretation based on the Slupecki’s
logic. In particular, it assumes the standard interpretation for the assignment of truth values to atoms (i.e., arguments) and expressions
using the ¬, ∧ and ∨ operators, whereas for the implication operator ⇒ (for which there is no standard interpretation) it assumes the
Slupecki’s interpretation which is defined as follows:

𝜗𝑆𝑙(𝜑 ⇒ 𝜓) =

{
𝚝𝚛𝚞𝚎 𝑖𝑓 𝜗𝑆𝑙(𝜑) ∈ {𝚏𝚊𝚕𝚜𝚎,𝚞𝚗𝚍𝚎𝚏}
𝜗𝑆𝑙(𝜓) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

A natural requirement for constraints applied to argumentation frameworks is that they should have admissible interpretations:
the constraints themselves should not be contradictory and every argument that is satisfied by an extension should not be exposed
to undefended attacks (w.r.t. the extension).

Definition 4 (Admissible constraint). Let Λ = ⟨, ⟩ be an AF. A set  of formulae is called admissible (for Λ) if there exists an
admissible set 𝑆 ⊆  for ⟨, ⟩ such that 𝑆 ⊧ .

Assuming that constraints are admissible, extensions for a CAF are defined as follows.

Definition 5 ( -extension of a CAF). Let Ω = ⟨, , ⟩ be a CAF, where  is an admissible set of constraints, and let  be a semantics
for ⟨, ⟩. Then 𝐸 ⊆  is an  -extension of Ω if it is an  -extension of ⟨, ⟩ and 𝐸 ⊧ .

The main difference between the two CAF semantics briefly reviewed in this section is as follows. In Coste-Marquis et al. (2006) [41]

the truth value of arguments is false for every argument not belonging to the considered extension (even for those that are undecided)
and satisfiability of constraints is evaluated with respect to two-valued semantics. It follows, e.g., that a constraint of the form
𝚝 ⇒ 𝑎 ∨ ¬𝑎 is useless according to [41] (since it is always satisfied). In contrast, in the Arieli’s 3-valued semantics this constraint
indicates that argument 𝑎 cannot have a neutral, undefined, status. The use of 3-valued semantics allows us to distinguish between
different conditions on arguments. For instance, the constraint 𝚝⇒ ¬𝑎 means that 𝑎 should be rejected, while the constraint 𝑎 ⇒ 𝚏 is
a somewhat weaker demand: 𝑎 should not be accepted, and so its status may be undecided.

A drawback of Arieli’s semantics, due to the assumption of the Slupecki’s logic for interpreting the implication operator, is that
it does not distinguish two constraints of the form 𝜑 ⇒ 𝚏 and 𝜑 ⇒ 𝚞, though it distinguishes two constraints of the form 𝚝⇒ 𝜑 and
𝚞⇒ 𝜑.

4. Revisiting the CAF semantics

In this section, we investigate two new 3-valued semantics for constraints satisfaction in CAF. The reason for considering 3-valued
satisfaction is that all the AF semantics, except the stable one, are 3-valued and constraints satisfaction under 2-valued logic (obtained
7

by interpreting the undefined truth value as either true or false) such as the one discussed in Section 3.1.1 is not satisfactory. We restrict

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

𝜗𝐾 (𝜑 ⇒ 𝜓) 𝜗𝐾 (𝜓)
f u t

𝜗𝐾 (𝜑)
f t t t

u u u t

t f u t

Kleene

𝜗𝐿(𝜑 ⇒ 𝜓) 𝜗𝐿(𝜓)
f u t

𝜗𝐿(𝜑)
f t t t

u u t t

t f u t

Lukasiewicz

𝜗𝑆𝑙(𝜑 ⇒ 𝜓) 𝜗𝑆𝑙(𝜓)
f u t

𝜗𝑆𝑙(𝜑)
f t t t

u t t t

t f u t

Slupecki

Fig. 4. Semantics of the implication operator 𝜑 ⇒ 𝜓 .

our attention to logics which extend the classical 2-valued logic and differ one from the other in the semantics of the implication
operator only.2 Among these we focus our attention to the most well-known 3-valued logics: Kleene’s logic and Lukasiewicz’s logic.

The tables in Fig. 4 report three different semantics for the implication operator: Kleene and Lukasiewicz logics are at the basis
of the semantics studied in this paper, whereas Slupecki logic is at the basis of the semantics studied in [17]. In the following, 

denotes the propositional language defined from a set of arguments  and truth values (𝚏, 𝚞 and 𝚝) and the standard connectives (∧,
∨, ¬, ⇒ and ⇔).

Moreover, we use the evaluation functions 𝜗𝐾 whenever we refer to the Kleene’s logic, and 𝜗𝐿 whenever we refer to the
Lukasiewicz’s logic.

Thus, under Kleene’s logic we have that 𝜗𝐾 (𝜑 ⇒ 𝜓) = 𝜗𝐾 (¬𝜑 ∨𝜓), whereas under Lukasiewicz’s logic 𝜗𝐿(𝜑 ⇒ 𝜓) = 𝜗𝐿(¬𝜑 ∨𝜓) ∨
(𝜗𝐿(𝜑) = 𝜗𝐿(𝜓)).3 A nice property of Kleene’s logic is that it preserves the equivalence 𝜑 ⇒ 𝜓 ≡ ¬𝜑 ∨ 𝜓 . Moreover, concerning the
implication operator, differently from other logics (e.g. Lukasiewicz, Slupecki’s and Priest’s), Kleene’s logic preserves equivalence
of formulae when elements of the disjunctive head are moved to the body (after negating them), or elements of the conjunctive
body are moved to the head (after negating them), analogously to the case of 2-valued semantics. On the other side, Kleene’s logic
does not preserve the axiom 𝜑 ⇒ 𝜑, which is instead valid under Lukasiewicz’s logic (as well as Slupecki and Godel logics). For
formulae defining constraints, Lukasiewicz logic allows to distinguish 𝜑 ⇒ 𝚏 from 𝜑 ⇒ 𝚞 and 𝚝 ⇒ 𝜑 from 𝚞 ⇒ 𝜑, while Kleene’s
logic does not. Another reason for investigating CAF under the two different above-mentioned 3-valued logics is the complexity of
the expressivity of the two derived frameworks. Indeed, as we will show in the paper, the fact that Lukasiewicz’s logic allows us to
express finer constraints gives rise, for some semantics (e.g. the preferred one), to a more expressive framework characterized by a
higher computational complexity.

Definition 6 ((Strong) constraint). A (strong) constraint is a formula of one of the following forms: (𝑖) 𝜑 ⇒ 𝑣, or (𝑖𝑖) 𝑣 ⇒ 𝜑, where 𝜑 is
a propositional formula in  and 𝑣 ∈ {𝚏, 𝚞, 𝚝}. A constraint is said boolean when 𝑣 ∈ {𝚏, 𝚝}. A boolean constraint of the form 𝜑 ⇒ 𝚏
where 𝜑 is a conjunction containing arguments or negated arguments is called denial (or negative) constraint.

In the following, we refer to both Kleene and Lukasiewicz logics. We assume that the set of constraints is satisfiable, that is, that
there is an assignment of truth values to the arguments that makes all constraints true under the given logic (Kleene’s or Lukasiewicz’s).
Checking whether a constraint is satisfied by a set of arguments 𝑆 under Kleene logic consists in checking whether the body is false
or the head is true (w.r.t. 𝑆), whereas under the Lukasiewicz logic is equivalent to check whether the body is false or the head is true
or the truth values of head and body coincide (w.r.t. 𝑆). We also assume that  is a set of (satisfiable) constraints built from  as
defined in Definition 6.

Example 6. Under Lukasiewicz logic we have that:

• the constraint 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏 states that at least one of the arguments 𝑎, 𝑏 and 𝑐 must be false, whereas 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚞 states that 𝑎,
𝑏 and 𝑐 cannot be all true.

• the constraint (𝑎 ⇒ 𝑏) ⇒ 𝚏 states that the implication 𝑎 ⇒ 𝑏 must be false, that is 𝑎 must be true and 𝑏 must be false.

• the constraint (𝑎 ⇒ 𝑏) ⇒ 𝚞 states that the implication 𝑎 ⇒ 𝑏 cannot be true, that is the truth value of 𝑎 must be greater than that
of 𝑏. □

Clearly, constraints of the forms 𝚏 ⇒ 𝜑 and 𝜑 ⇒ 𝚝 are useless because always satisfied. Regarding the stable semantics, which
is 2-valued, only the symbols 𝚏 and 𝚝 can be used and (all) interpretations of the implication operator coincide with the classical
2-valued interpretation. Thus, a constraint 𝜑 ⇒ 𝚞 is interpreted as 𝜑 ⇒ 𝚏, whereas a constraint 𝚞⇒ 𝜓 is interpreted as 𝚝⇒ 𝜓 .

The next definition introduces two new semantics for CAF, where 𝜎 = 𝐾 (resp., 𝜎 = 𝐿) denotes the Kleene (resp., Lukasiewicz)
semantics, i.e. the implication operator ⇒ is interpreted according to the Kleene’s (resp., Lukasiewicz’s) logic.

2 Most of the 3-valued semantics differ in the assignment of the truth value to implications of the form 𝚞 ⇒ 𝚏, which can be either 𝚏 (e.g. Priest, Godel), or 𝚞
(Kleene, Lukasiewicz, Bochvar), or 𝚝 (e.g. Slupecki), or of the form 𝚞⇒ 𝚞, which can be either 𝚞 (e.g. Kleene, Priest) or 𝚝 (e.g. Lukasiewicz, Slupecki, Godel, Bochvar).
Moreover Bochvar’s logic differs from Slupecki’s logic as it assigns 𝚏 to the implication 𝚝⇒ 𝚞, while all other logics considered here assign the value 𝚞. We refer the
interested reader to [20] for an overview on different 3-valued logics.

3 Recall that the (primitive) propositional connectives of Lukasiewicz’s logic are ⇒ and the constant 𝚏. Additional connectives are defined in terms of these as
8

follows: ¬𝐴 =𝑑𝑒𝑓 𝐴 ⇒ 𝚏, 𝐴 ∨𝐵 =𝑑𝑒𝑓 (𝐴 ⇒ 𝐵) ⇒ 𝐵, 𝐴 ∧𝐵 =𝑑𝑒𝑓 ¬(𝐴 ∨𝐵) and 𝐴 ⇔ 𝐵 =𝑑𝑒𝑓 (𝐴 ⇒ 𝐵) ∧ (𝐵 ⇒ 𝐴).

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Definition 7 ((Revised) CAF semantics). Let Ω = ⟨, , ⟩ be a CAF,  ∈ {𝚌𝚘, 𝚐𝚛, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜} a semantics, and 𝜎 ∈ {𝐾, 𝐿} the under-

lying logic (either Kleene’s or Lukasiewicz’s logic). A set 𝐸 ⊆  is an 𝜎 -extension for Ω if 𝐸 is an  -extension for ⟨, ⟩ and 𝐸 ⊧ 

under the 𝜎 logic.

The set of 𝜎 -extensions for a CAF Ω, where  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, will be denoted by 𝜎(Ω). Note that, given a CAF Ω =⟨, , ⟩, if we consider the corresponding AF Λ = ⟨, ⟩, then the set of complete extensions of Λ that satisfy  does not always
form a complete meet-semilattice. This is an important difference between CAF and AF, and it also holds for the CAF semantics
reviewed in the previous section. Roughly speaking, the constraints may break the lattice by marking as unfeasible some extensions.
As a consequence, even the grounded extension is not guaranteed to exist, as shown below.

Example 7. Consider the CAF Ω = ⟨{𝑎, 𝑏, 𝑐}, {(𝑎, 𝑏), (𝑏, 𝑎), (𝑏, 𝑐), (𝑐, 𝑐)}, {𝚝⇒ 𝑎 ∧ 𝑏}⟩ derived from the AF Λ of Example 4 (shown in
Fig. 2) by adding the strong constraint 𝚝⇒ 𝑎 ∧ 𝑏. As shown in Example 4, AF Λ has three complete extensions, 𝐸1 = ∅, 𝐸2 = {𝑎} and
𝐸3 = {𝑏}, but all extensions do not satisfy the constraint stating that both 𝑎 and 𝑏 must belong to them. Thus Ω has no complete
extensions, and thus no grounded extension, under both Kleene and Lukasiewicz logics. □

It is worth noting that for any CAF Ω = ⟨, , ⟩, we have that 𝚜𝚝𝐾 (Ω) = 𝚜𝚝𝐿(Ω) and that 𝐾 (Ω) = 𝐿(Ω) for  ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚜}
whenever all constraints 𝜑 ⇒ 𝑣 and 𝑣 ⇒ 𝜑 in  are such that 𝑖) 𝑣 ≠ 𝚞 and 𝑖𝑖) 𝜑 does not contain the implication and equivalence
operators (i.e., ⇒ and ⇔). The reason is that the stable semantics is 2-valued and does not make use of the undefined truth value;
moreover, the evaluation of constraints is the same under both logics if the implication and equivalence operators are not used in
the body or in the head of the constraints (condition 𝑖𝑖)), and the truth value 𝑣 differs from 𝚞 (condition 𝑖)). Intuitively, these two
conditions exclude the case 𝚞⇒ 𝚞 where the Kleene and Lukasiewicz logics differ (cf. Fig. 4).

4.1. Complexity of credulous and skeptical acceptance

In this section, we investigate the complexity of CAF under Kleene and Lukasiewicz interpretations of the constraints, and in
particular of the implication operator whose semantics is different in the two logics. We recall that we use 𝐶𝐴𝐾


and 𝑆𝐴𝐾


(resp., 𝐶𝐴𝐿



and 𝑆𝐴𝐿


) to denote the credulous and skeptical acceptance problems under Kleene (resp., Lukasiewicz) logic.

We start with the following lemma that intuitively states that Kleene interpretation can be captured by Lukasiewicz logic.

Lemma 1. For every CAF Ω = ⟨, , ⟩ there exists a CAF Ω′ = ⟨, , ′⟩ such that 𝐾(Ω) = 𝐿(Ω′) and 𝐶 ′ can be derived from  in
linear time.

Proof. It is sufficient to first rewrite every equivalence 𝑎 ⇔ 𝑏 into (𝑎 ⇒ 𝑏) ∧ (𝑏 ⇒ 𝑎) and then replace every implication 𝑎 ⇒ 𝑏 with
(¬𝑎 ⇒ 𝑏) ⇒ 𝑏. □

The following lemma states a monotonic property that holds under Kleene logic: if an extension (of an AF underlying a given CAF)
satisfies a set of constraints, then the set of constraints continues to be satisfied for larger extensions.

Lemma 2. Let Ω = ⟨, , ⟩ be a CAF and 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2. Then, under Kleene logic, 𝐸1 ⊧  implies 𝐸2 ⊧ .

Proof. First, recall that 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and that 𝐸1 = 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2) = 𝐸2. Under Kleene logic every
constraint 𝜅 can be rewritten in standard form as a disjunction of conjunction of literals, that is, in the form 𝜅 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧𝓁1
𝑛1
) ∨

⋯ ∨ (𝓁𝑘
1 ∧⋯ ∧ 𝓁𝑘

𝑛𝑘
). If 𝐸1 ⊧ 𝜅, it means that there must be 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧ 𝓁𝑖
𝑛𝑖
). Moreover, as 𝐸1 ⊆ 𝐸2 implies that

𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. □

Observe that the previous lemma does not hold under Lukasiewicz interpretation of the implication operator. As an example,
consider the CAF Ω = ⟨{𝑎, 𝑏}, {(𝑎, 𝑏), (𝑏, 𝑎)}, {𝑎 ∨ ¬𝑎 ⇒ 𝚞}⟩. The underlying AF has three complete extensions 𝐸0 = ∅, 𝐸1 = {𝑎}
and 𝐸2 = {𝑏}. We have that 𝚌𝚘𝐾 (Ω) = ∅, since the constraint is not satisfied by any extension of the underlying AF. In contrast,
𝚌𝚘𝐿(Ω) = {𝐸0} since the constraint is satisfied by 𝐸0, but not by 𝐸1 and 𝐸2 even if 𝐸0 ⊆ 𝐸1 and 𝐸0 ⊆ 𝐸2.

Although the presence of constraints in CAF breaks the meet-semilattice of complete extensions, reasoning under the grounded
semantics remains tractable.

Proposition 1. The complexity of checking whether a CAF admits a grounded extension is in PTIME under both Kleene and Lukasiewicz
logics.

Proof. Let Ω = ⟨, , ⟩ be a CAF. A set of arguments 𝑆 ⊆  is the grounded extension of Ω if 𝑆 is the grounded extension of ⟨, ⟩
and 𝑆 ⊧ . Computing the grounded extension 𝑆 is in PTIME [48]. Checking whether the grounded extension 𝐸 ⊆  satisfies a given
finite set of constraints  is also in PTIME (in the size of Ω), under both Kleene and Lukasiewicz logics, from which the statement
9

follows. □

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 5. Representation of the AF ⟨′, ′⟩ in the CAF given in the construction of the hardness proof of Theorem 1 concerning the problem 𝐶𝐴𝐿
𝚙𝚛 . The dashed ellipse

represents the starting AF ⟨, ⟩, with  = {𝑎1 , … , 𝑎𝑛}, from which the construction of the AF ⟨′, ′⟩ is build.

Therefore, since if a grounded extension for a CAF exists then it is unique, computing the credulous (or, equivalently, the skeptical)
acceptance of an argument under the grounded semantics is still polynomial.

However, the credulous and skeptical acceptance of an argument w.r.t a CAF ⟨, , ⟩ may differ from that of the associated AF ⟨, ⟩, independently of the semantics adopted, as shown in the following example.

Example 8. Continuing from Example 7, there are no arguments in the CAF that are credulously accepted under the complete
semantics. In contrast, for the AF of Example 4, argument 𝑎 is credulously accepted under the complete and preferred semantics,
whereas argument 𝑏 is credulously accepted under complete, preferred, stable and semi-stable semantics. Moreover, 𝑏 is skeptically
accepted under stable and semi-stable semantics, whereas arguments 𝑎 and 𝑐 are not skeptically accepted under any of the semantics
considered in the paper. □

As discussed earlier, the complete semantics in CAF may admit no extensions. This is analogous to what happens in AF for the
stable semantics, where the requirement that the extensions must be total may not be satisfied by any set of arguments. Intuitively, the
problem of non-existence of complete extensions in CAF may arise because the constraints may contradict the extensions prescribed
by the complete semantics. As an example, consider a CAF whose underlying AF consists of a single (unattacked) argument 𝑎, and
a (strong) constraint prescribing that the acceptance status of 𝑎 must be false (i.e., 𝑎 ⇒ 𝚏). Clearly, the complete extension of the
underlying AF (that is, {𝑎}) does not satisfy the constraint, and thus the CAF has no complete extensions. However, we can find
special cases where it is possible to guarantee the existence of at least one complete extension for CAF. An interesting case is when
𝚐𝚛(⟨, ⟩) ⊧ , i.e., when the constraints in  do not exclude the existence of the grounded extension. Notably, this condition can be
checked in polynomial time (cf. Proposition 1) and implies the existence of complete, preferred, and semi-stable extensions, as it holds
for AF. Moreover, thanks to the result of Lemma 2, the condition 𝚐𝚛(⟨, ⟩) ⊧  also guarantees that (𝑖) under the Kleene’s logic the
meet-semilattice of complete extensions is preserved, that is 𝚌𝚘𝐾 (⟨, , ⟩) = 𝚌𝚘(⟨, ⟩), whereas (𝑖𝑖) under the Lukasiewicz’s logic
the meet-semilattice exists, though we have that 𝚌𝚘𝐿(⟨, , ⟩) ⊆ 𝚌𝚘(⟨, ⟩) since extensions of the underlying AF which are larger
than the grounded one could be filtered out as they may not satisfy the constraints (as illustrated in the example in the paragraph
after the proof of Lemma 2).

In general, the fact that the grounded extension may not exist for CAFs impacts on the complexity of the skeptical acceptance
problem under complete semantics (irrespective of the logic considered for interpreting the constraints), which cannot be longer
decided by simply looking at the grounded extension as for the case of AFs (where an argument is skeptically accepted under complete
semantics if and only if it is in the grounded extension). Similarly, credulous acceptance under preferred semantics for CAFs under
Lukasiewicz logic can no longer be decided by checking credulous acceptance under complete semantics (under Kleene logic, the
complexity of credulous acceptance under preferred semantics remains the same of that of AF thanks to the property stated in
Lemma 2). In fact, it turns out that the complexity of the above-mentioned problems for CAF increases of one level in the polynomial
hierarchy w.r.t. that for AF. In all the other cases we can show that the complexity of credulous and skeptical reasoning for CAF and
AF coincides, as stated in the following theorem which provides tight complexity results for all problems considered.

Theorem 1. For any CAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) 𝑁𝑃 -complete for  = 𝚙𝚛 and 𝜎 = 𝐾 ,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑣) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}, and

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) Except that for the co𝑁𝑃 -hardness result concerning skeptical acceptance under complete semantics (irrespective
of the logic considered for interpreting the constraints), and the Σ𝑝

2-hardness result concerning the credulous acceptance under
preferred semantics and Lukasiewicz logic, which are considered below, the other hardness results derive from the fact that they hold
for any CAFs ⟨, Σ, ⟩ where  = ∅, that is, for AFs. In fact, it has been shown that the complexity of the credulous and skeptical
acceptance problems for AFs is [45,49,51,56]:

• under complete semantics, NP-complete and in PTIME, respectively;
10

• under stable semantics, NP-complete and coNP-complete, respectively;

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• under preferred semantics, NP-complete and Π𝑝

2-complete, respectively;

• under semi-stable semantics, Σ𝑝

2-complete and Π𝑝

2-complete, respectively.

The lower bound for skeptical acceptance under complete semantics can be proved by reducing 𝑆𝐴𝚜𝚝 for AF to 𝑆𝐴∗
𝚌𝚘 for CAF

as follows. Given an AF Λ = ⟨, ⟩ we build a CAF Ω = ⟨, , ⟩ where  = {𝑎 ∧ ¬𝑎 ⇒ 𝚏 | 𝑎 ∈}. Observe that the set of stable
extensions of Λ coincides with the set of complete extensions of Ω, as the constraints force to select only complete extensions not
containing undefined arguments. Therefore, 𝑆𝐴∗

𝚌𝚘 is coNP-hard. It is worth noting that the same strategy can be used to provide an
alternative proof for the NP-hardness of 𝐶𝐴∗

𝚌𝚘.

The lower bound for credulous acceptance under preferred semantics and Lukasiewicz logic can be proved by reducing from the
complement of the Π𝑝

2-complete problem of checking whether a given AF Λ is coherent [49], that is, checking whether 𝚙𝚛(Λ) = 𝚜𝚝(Λ).
We use 𝖢𝖧 to denote the problem of checking whether a given AF Λ is not coherent. Hence, 𝖢𝖧 is Σ𝑝

2-complete.

Let Λ = ⟨, ⟩. Assume w.l.o.g. that 𝚙𝚛(Λ) ≠ 𝚐𝚛(Λ). We show that 𝖢𝖧(Λ) is true iff 𝐶𝐴𝐿
𝚙𝚛(⟨′, ′, ⟩, 𝜙) is true, where:

• ′ = ∪ {𝑎̄, 𝐶𝑎 ∣ 𝑎 ∈} ∪ {𝜙, 𝜙̄, 𝜓, 𝜓̄};

• ′ = ∪ {(𝑎, 𝑎̄), (𝑎, 𝐶𝑎), (𝑎̄, 𝐶𝑎), (𝐶𝑎, 𝜓̄), (𝑎, 𝜙̄) ∣ 𝑎 ∈} ∪ {(𝜓̄ , 𝜓), (𝜙̄, 𝜙)};

•  = {𝚞⇒ 𝜓 ; 𝜓 ⇒ 𝚞}.

The AF ⟨′, ′⟩ of the above-defined CAF is shown in Fig. 5.

Given Λ′ = ⟨′, ′⟩, there is a one-to-one correspondence between 𝚙𝚛(Λ) and 𝚙𝚛(Λ′). Particularly, it holds that 𝚙𝚛(Λ) = {𝐸′ ∩ ∣
𝐸′ ∈ 𝚙𝚛(Λ′)} and 𝚙𝚛(Λ′) = 𝐸 ∪ {𝑎̄ ∣ 𝑎 ∈ 𝐷𝑒𝑓 (𝐸)} ∪ {𝜓̄ ∣ 𝐸 ∈ 𝚜𝚝(Λ)} ∪ {𝜙 ∣ 𝐸 ∈ 𝚙𝚛(Λ)}.

(⇒) 𝖢𝖧(Λ) is a true instance, that is Λ is not coherent. Thus, there exists at least one preferred extension 𝐸 ∈ 𝚙𝚛(Λ) s.t. 𝐸 ∉
𝚜𝚝(Λ). Thus, by construction there exists 𝐸′ ∈ 𝚙𝚛(Λ′) such that 𝜓 ∈′ ⧵ (𝐸′ ∪ 𝐷𝑒𝑓 (𝐸′)) and 𝜙 ∈ 𝐸′. Observe that 𝐸′ ⊧  and thus
𝐶𝐴𝐿

𝚙𝚛(⟨′, ′, ⟩, 𝜙) is true.

(⇐) 𝖢𝖧(Λ) is a false instance, that is Λ is coherent. Thus, all preferred extensions 𝐸 ∈ 𝚙𝚛(Λ) are s.t. 𝐸 ∈ 𝚜𝚝(Λ). Thus, by con-

struction, all preferred extensions 𝐸′ ∈ 𝚙𝚛(Λ′) contain both 𝜙 and 𝜓̄ . Thus, any preferred extension 𝐸′ ∈ 𝚙𝚛(Λ′) is such that 𝐸′ ̸⊧ ,
and thus 𝚙𝚛(⟨′, ′, ⟩) = ∅ and consequently 𝐶𝐴𝐿

𝚙𝚛(⟨′, ′, ⟩, 𝜙) is false.

(Membership.) We now provide the membership results for each considered semantics, problem, and logic. Let Ω = ⟨, , ⟩ be a
CAF, Λ = ⟨, 𝑅⟩ be an AF, and 𝑎 ∈ be the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Ω.

- (𝐶𝐴∗
𝚌𝚘). Recall that a complete extension of an AF is an admissible set that contains all the arguments it defends [47]. Hence,

a guess-and-check strategy to decide whether 𝑎 belongs to a complete extension of Ω is as follows. First, guess a set 𝑆 ⊆  of
arguments containing 𝑎 (in PTIME). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 contains all the arguments
that it defends w.r.t. Λ (in PTIME), and (𝑖𝑖𝑖) 𝑆 ⊧  (in PTIME). Therefore, 𝐶𝐴∗

𝚌𝚘 is in NP.

- (𝑆𝐴∗
𝚌𝚘). Using a strategy similar to that given for 𝐶𝐴∗

𝚌𝚘 , it can be shown that the complementary problem of checking whether
there exists a complete extension for Ω not containing 𝑎 is in NP. Therefore 𝑆𝐴∗

𝚌𝚘 is in coNP.

- (𝐶𝐴∗
𝚜𝚝). Recall that a stable extension of an AF is a conflict-free set that attacks every other argument in the AF [47]. We say that

a set 𝑆 attacks an argument 𝑏 if there is 𝑐 ∈ 𝑆 such that 𝑐 attacks 𝑏. A guess-and-check strategy to decide whether 𝑎 belongs to
a stable extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎 (in polynomial time). Then, check that
(𝑖) 𝑆 is a conflict-free set for Λ, (𝑖𝑖) 𝑆 attacks each argument in  ⧵𝑆 , and (𝑖𝑖𝑖) 𝑆 ⊧ . Since all these steps can be accomplished
in PTIME, it follows that 𝐶𝐴∗

𝚜𝚝 is in NP.

- (𝑆𝐴∗
𝚜𝚝). The complementary problem of checking whether there exists a stable extension for Ω not containing 𝑎 is in NP. Therefore

𝑆𝐴∗
𝚜𝚝 is in coNP.

- (𝐶𝐴𝐿
𝚙𝚛). A preferred extension of an AF is a maximal (w.r.t. ⊆) admissible set for it [47]. A guess-and-check strategy for deciding

whether 𝑎 belongs to a preferred extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎 (in polynomial
time). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 ⊧  (in PTIME), and (𝑖𝑖𝑖) there is no admissible set 𝑆′ for
Λ such that 𝑆′ ⊃ 𝑆 and 𝑆′ ⊧ . It can be shown that (𝑖𝑖𝑖) is in coNP. Indeed, a guess-and-check strategy for the complementary
problem of deciding whether there is an admissible set 𝑆′ for Λ such that 𝑆′ ⊃ 𝑆 and 𝑆′ ⊧  is as follows: guess a set 𝑆′ ⊆ 

such that 𝑆′ ⊃ 𝑆 , and check that 𝑆′ is an admissible set for Λ and 𝑆′ ⊧  (in PTIME). Therefore, 𝐶𝐴𝐿
𝚙𝚛 is in Σ𝑝

2.

- (𝐶𝐴𝐾
𝚙𝚛). Recalling that a preferred extension of an AF is a ⊆-maximal complete extension [47], a guess-and-check strategy for

deciding whether 𝑎 belongs to a preferred extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments containing 𝑎. Then,
check that (𝑖) 𝑆 is a complete extension for Λ (in PTIME), and (𝑖𝑖) 𝑆 ⊧  (in PTIME). The fact that it suffices to check that 𝑆
is a complete (rather than a preferred) extension for Λ follows from the result of Lemma 2, which entails that also ⊆-maximal
complete extensions (w.r.t. the guessed one) satisfy the set constraints. Therefore, 𝐶𝐴𝐾

𝚙𝚛 is in NP.

- (𝑆𝐴𝐿
𝚙𝚛). The complementary problem of checking whether there exists a preferred extension for Ω not containing 𝑎 is in Σ𝑝

2.
Therefore 𝑆𝐴𝐿

𝚙𝚛 is in Π𝑝

2.

- (𝐶𝐴∗
𝚜𝚜𝚝). A semi-stable extension of an AF is an admissible set 𝑆 such that 𝑆 ∪𝐷𝑒𝑓 (𝑆) is maximal (w.r.t. ⊆) [51]. A guess-and-

check strategy for deciding whether 𝑎 belongs to a semi-stable extension of Ω is as follows. First, guess a set 𝑆 ⊆  of arguments
containing 𝑎 (in polynomial time). Then, check that (𝑖) 𝑆 is an admissible set for Λ (in PTIME), (𝑖𝑖) 𝑆 ⊧  (in PTIME), and (𝑖𝑖𝑖)
11

there is no admissible set 𝑆′ for Λ such that 𝑆′ ∪ 𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪ 𝐷𝑒𝑓 (𝑆) and 𝑆′ ⊧ . It can be shown that (𝑖𝑖𝑖) is in coNP.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 6. AF ⟨,⟩ underlying WAF Υ of Example 9 (and the PAF of Example 12).

A guess-and-check strategy for the complementary problem of deciding whether there is an admissible set 𝑆′ for Λ such that
𝑆′ ∪𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪𝐷𝑒𝑓 (𝑆) and 𝑆′ ⊧  is as follows: guess a set 𝑆′ ⊆  such that 𝑆′ ∪𝐷𝑒𝑓 (𝑆′) ⊃ 𝑆 ∪𝐷𝑒𝑓 (𝑆), and check that
𝑆′ is an admissible set for Λ and 𝑆′ ⊧  (in PTIME). Therefore, 𝐶𝐴∗

𝚜𝚜𝚝 is in Σ𝑝

2.

- (𝑆𝐴∗
𝚜𝚜𝚝). The complementary problem of checking whether there exists a semi-stable extension for Ω not containing 𝑎 is in Σ𝑝

2.
Therefore 𝑆𝐴∗

𝚜𝚜𝚝 is in Π𝑝

2. □

5. Weak constrained AF

In this section, we present a generalization of CAF with weak constraints. Differently from the strong constraints previously
discussed, weak constraints are propositional formulae that should be satisfied if possible. Specifically, weak constraints are logical
formulae having the same syntax as strong constraints, but they do not necessarily all have to be satisfied, and we give preference to
extensions that better satisfy them (called best extensions) according to a given criterion.

Definition 8. (Weak constrained AF) A Weak constrained Argumentation Framework (WAF) is a tuple Δ = ⟨, , , ⟩, where ⟨, , ⟩
is a CAF and  is a set of weak constraints built from .

The semantics of a WAF is defined by considering two possible criteria for selecting the preferable extensions w.r.t. weak
constraints—only weak constraints are considered when selecting the preferable extensions since strong constraints must be all
satisfied. The two criteria considered for assessing to which extent an extension satisfies a set of weak constraints are: (i) maxi-

mal set criterion, considering as preferable (or “best”) extensions the ones that satisfy a maximal set of weak constraints, and (ii)
maximum-cardinality criterion, considering as preferable (or “optimal”) extensions the ones that satisfy a maximal number of weak
constraints. Clearly, the selection of preferable extensions makes sense only for semantics admitting multiple extensions, that is,
complete, preferred, stable, and semi-stable semantics. Thus, in the following, whenever we consider a generic semantics  , we refer
to  ∈ {𝚌𝚘,𝚙𝚛,𝚜𝚝,𝚜𝚜𝚝}.

In the next subsections, after formally defining the meaning of a WAF under the maximal-set and maximum-cardinality semantics,
we investigate the complexity of credulous and skeptical reasoning in the new framework.

5.1. Maximal-set semantics

The semantics of a WAF using the maximal-set criterion is defined as follows.

Definition 9 (Maximal-Set Semantics). Given a WAF Υ = ⟨, , , ⟩, an 𝜎 -extension 𝐸 for ⟨, , ⟩ is a maximal-set 𝜎 -extension
(𝚖𝚜𝜎 -extension) for Υ if, let 𝐸 ⊆  be the set of weak constraints that are satisfied by 𝐸 (that is, 𝐸 ⊧ 𝐸), there is no 𝜎 -extension
𝐹 for ⟨, , ⟩ and 𝐹 ⊆  such that 𝐹 ⊧ 𝐹 and 𝐸 ⊂ 𝐹 .

Given a semantics  and a logic 𝜎 ∈ {𝐾, 𝐿} for the interpretation of the constraints, 𝚖𝚜-𝜎 denotes the maximal-set version of
𝜎 (e.g., 𝚖𝚜-𝚌𝚘𝐾 denotes the 𝚖𝚜 complete semantics under Kleene interpretation).

Example 9. Consider the WAF Υ = ⟨, , , ⟩, where ⟨ = {𝑎, 𝑏, 𝑐, 𝑑},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑐, 𝑑), (𝑑, 𝑐)}⟩ is the AF shown in Fig. 6,
 = ∅, and  = {𝑤1 = 𝑐 ⇒ 𝚏, 𝑤2 = 𝑎 ∨ ¬𝑎 ⇒ 𝚞}. Under Lukasiewicz logic 𝑤1 and 𝑤2 state that, preferably, 𝑐 should be false, and 𝑎
should be undefined, respectively. Under Kleene logic, 𝑤1 states that 𝑐 should be preferably false, whereas 𝑤2 becomes useless as it
is never satisfied (recall that it coincides with 𝑎 ∨ ¬𝑎 ⇒ 𝚏).

Υ has 9 complete extensions: 𝐸0 = {}, 𝐸1 = {𝑎}, 𝐸2 = {𝑏}, 𝐸3 = {𝑐}, 𝐸4 = {𝑑}, 𝐸5 = {𝑎, 𝑐}, 𝐸6 = {𝑎, 𝑑}, 𝐸7 = {𝑏, 𝑐} and
𝐸8 = {𝑏, 𝑑}. In particular, 𝐸0 is the grounded extension, whereas 𝐸5, 𝐸6, 𝐸7, 𝐸8 are preferred, stable, and semi-stable extensions
of ⟨, , ⟩. These are also extensions of AF ⟨, ⟩, since  = ∅.

Regarding the satisfaction of weak constraints, first observe that argument 𝑐 is false in 𝐸4, 𝐸6 and 𝐸8, whereas argument 𝑎
is undefined in 𝐸0, 𝐸3 and 𝐸4. Thus, since under Lukasiewicz logic 𝑤1 states that 𝑐 should be preferably false, and 𝑤2 states 𝑎
should be preferably undefined, under Lukasiewicz interpretation we have that 𝐸0 ⊧ {𝑤2}, 𝐸3 ⊧ {𝑤2}, 𝐸4 ⊧ {𝑤1, 𝑤2}, 𝐸6 ⊧ {𝑤1},
and 𝐸8 ⊧ {𝑤1}, whereas the other complete extensions do not satisfy any constraint. Therefore, the maximal-set preferred (stable,
semi-stable) extensions are 𝐸6 and 𝐸8 (i.e. 𝚖𝚜-𝚙𝚛𝐿(Υ) = 𝚖𝚜-𝚜𝚝𝐿(Υ) = 𝚖𝚜-𝚜𝚜𝐿(Υ) = {𝐸6, 𝐸8}), whereas there is only one maximal-set
complete extension, which is 𝐸4 (i.e. 𝚖𝚜-𝚌𝚘𝐿(Υ) = {𝐸4}).

Considering Kleene interpretation, recalling that 𝑐 is false in 𝐸4, 𝐸6 and 𝐸8, and that 𝑤1 states that 𝑐 should be preferably
false (whereas 𝑤2 is useless in this case), we have that 𝚖𝚜-𝚙𝚛𝐾 (Υ) = 𝚖𝚜-𝚜𝚝𝐾 (Υ) = 𝚖𝚜-𝚜𝚜𝐾 (Υ) = {𝐸6, 𝐸8}, whereas 𝚖𝚜-𝚌𝚘𝐿(Υ) =
12

{𝐸4, 𝐸6, 𝐸8}. □

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Table 1

Complexity of 𝐶𝐴𝜎


under complete (𝚌𝚘), stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝) semantics. For any complexity class 𝐶 , we use
𝐶 -c to denote 𝐶 -complete, and 𝐶 to denote Σ𝑝

2-hard and in 𝐶 . All the results except those for AF are new.

Framework

AF CAF NCAF (S)WAF WAF LWAF SWAF NWAF

 𝐶𝐴 𝐶𝐴𝐾


𝐶𝐴𝐿


𝐶𝐴∗


𝐶𝐴𝐾
𝚖𝚜 𝐶𝐴𝐿

𝚖𝚜 𝐶𝐴𝐾
𝚖𝚌 𝐶𝐴𝐿

𝚖𝚌 𝐶𝐴𝐾


𝐶𝐴𝐿


𝐶𝐴𝐾
𝚖𝚌 𝐶𝐴𝐿

𝚖𝚌 𝐶𝐴∗
𝚖𝚜

S
e
m

a
n
ti

cs 𝚌𝚘 NP-c NP-c NP-c NP-c Σ𝑝

2-c Σ𝑝

2-c Θ𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Σ𝑝

2-c

𝚜𝚝 NP-c NP-c NP-c NP-c Σ𝑝

2-c Σ𝑝

2-c Θ𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Σ𝑝

2-c

𝚙𝚛 NP-c NP-c Σ𝑝

2-c NP-c Σ𝑝

2-c Σ𝑝

3 Θ𝑝

2-c Θ𝑝

3 Δ𝑝

2-c Δ𝑝

3 Δ𝑝

2-c Δ𝑝

3 Σ𝑝

2-c

𝚜𝚜𝚝 Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

2-c Σ𝑝

3-c Θ𝑝

3 Θ𝑝

3 Σ𝑝

2-c Δ𝑝

3 Δ𝑝

3 Δ𝑝

3 Σ𝑝

2-c

Intuitively, given an 𝜎 -extension, checking satisfaction of a maximal-set of weak constraints means ensuring that no other 𝜎 -

extension is better according to that criterion. This is an additional source of complexity that makes, in most cases, credulous and
skeptical reasoning in WAFs one level higher in the polynomial-time hierarchy than CAFs.

Theorem 2. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿, and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

5.2. Maximum-cardinality semantics

Maximum-cardinality semantics for WAFs prescribes as preferable extensions those satisfying the highest number of weak con-

straints. This is similar to the semantics of weak constraints in DLV [9] where, in addition, each constraint has assigned a weight.

Definition 10 (Maximum-Cardinality Semantics). Given a WAF Υ = ⟨, , , ⟩, an 𝜎 -extension 𝐸 for ⟨, , ⟩ is a maximum-

cardinality 𝜎 -extension (𝚖𝚌𝜎 -extension) for Υ if, let 𝐸 ⊆  be the set of weak constraints in  that are satisfied by 𝐸, there is
no 𝜎 -extension 𝐹 for ⟨, , ⟩ and 𝐹 ⊆  such that 𝐹 ⊧ 𝐹 and |𝐸 | < |𝐹 |.

The next theorem provides complexity results for credulous and skeptical reasoning in WAF with maximum-cardinality semantics
under Kleene and Lukasiewicz interpretation of constraints.

Theorem 3. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Θ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

The complexity results stated so far, as well as those that will be given in the next sections, are summarized in Tables 1 and 2.
It turns out that, under standard complexity assumptions, computing credulous and skeptical acceptance in WAFs under maximum-

cardinality semantics is easier than using maximal-set semantics. Roughly speaking, this follows from the fact that a binary search
strategy can be used for deciding whether the cardinality of a set of constraints satisfied by an 𝜎 -extension containing a given
argument is maximum.

6. Stratified constraints in WAF

In this section, we explore the impact of considering a form of stratification over the set of constraints. We first consider WAF
where weak constraints define a partial order, and then focus on linearly ordered sets of constraints. Similarly to other contexts such
as logic programming, the concept of stratification allows defining classes of WAF with different complexity and expressivity. In
particular, after formally defining the syntax and semantics of stratified WAF, we investigate their complexity under the maximal-set
and maximum-cardinality interpretation of the weak constraints, showing that the complexity does not impact on the maximal-set
13

interpretation while it increases with the maximum-cardinality interpretation. In general, for both interpretations, the stratification

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Table 2

Complexity of 𝑆𝐴𝜎


under complete (𝚌𝚘), stable (𝚜𝚝), preferred (𝚙𝚛), and semi-stable (𝚜𝚜𝚝) semantics. For any com-

plexity class 𝐶 , we use 𝐶 -c to denote 𝐶 -complete, and 𝐶 to denote Π𝑝

2-hard and in 𝐶 . All the results except those for
AF are new.

Framework

AF CAF NCAF (S)WAF WAF LWAF SWAF NWAF

 𝑆𝐴 𝑆𝐴∗


𝑆𝐴∗


𝑆𝐴𝐾
𝚖𝚜 𝑆𝐴𝐿

𝚖𝚜 𝑆𝐴∗
𝚖𝚌 𝑆𝐴𝐾


𝑆𝐴𝐿


𝑆𝐴∗

𝚖𝚌 𝑆𝐴∗
𝚖𝚜

S
e
m

a
n
ti

cs 𝚌𝚘 P coNP-c coNP-c Π𝑝

2-c Π𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Π𝑝

2-c

𝚜𝚝 coNP-c coNP-c coNP-c Π𝑝

2-c Π𝑝

2-c Θ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Δ𝑝

2-c Π𝑝

2-c

𝚙𝚛 Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

3-c Θ𝑝

3 Π𝑝

2-c Δ𝑝

3 Δ𝑝

3 Π𝑝

2-c

𝚜𝚜𝚝 Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

2-c Π𝑝

3-c Θ𝑝

3 Π𝑝

2-c Δ𝑝

3 Δ𝑝

3 Π𝑝

2-c

approach provides a more flexible way to express different strata of constraints. Finally, we focus on a particular form of stratified
WAFs where every stratum is a singleton, providing tighter complexity bounds under Kleene logic.

The partial order on the set  of weak constraints is defined by partitioning  into strata 1, … , 𝑛 (with 𝑛 ≥ 1) so that weak
constraints in a stratum 𝑖 have higher priority than those in a stratum 𝑗 > 𝑖.

Definition 11. (Stratified WAF) A Stratified Weak constrained Argumentation Framework (SWAF) is a tuple ⟨𝐴, , , ⟩ where ⟨𝐴, , ⟩
is a CAF and  is a list of sets of weak constraints (1, … , 𝑛) built from .

Note that whenever 𝑛 = 1 we have a unique stratum and, then, SWAFs coincide with standard WAFs, which in turn implies that
SWAFs are at least as hard as WAFs from a computational standpoint.

Regarding the semantics of a SWAF ⟨𝐴, , , ⟩, the underlying idea is that weak constraints are applied one stratum at a time.
Therefore, given a set 𝑆 of 𝜎 -extensions of ⟨𝐴, , ⟩, the best/optimal 𝜎 -extensions are obtained by first computing the set 𝑆1 ⊆ 𝑆

which are best/optimal solutions w.r.t. 1 , then the set 𝑆2 ⊆ 𝑆1 of 𝜎 -extensions which are best/optimal solutions w.r.t. 2 is
selected, and so on.

Definition 12 (SWAF Semantics). Let Υ = ⟨, , , (1, … , 𝑛)⟩ be a SWAF and 𝜎 a semantics under logic 𝜎. An 𝜎 -extension 𝐸
for ⟨, , ⟩ is an 𝚖𝚜∕𝚖𝚌𝜎 -extension for Υ if:

• 𝐸 is an 𝚖𝚜∕𝚖𝚌𝜎 -extension for ⟨, , , 1⟩, and

• if 𝑛 > 1 there is no 𝚖𝚜∕𝚖𝚌𝜎 -extension 𝐸′ for ⟨, , , 1⟩ such that 𝐸′ is a 𝚖𝚜∕𝚖𝚌𝜎 -extension for ⟨, , , (2, ..., 𝑛) and
𝐸 is not.

Thus, to determine the set of 𝚖𝚜∕𝚖𝚌𝜎 -extensions 𝑆𝑛 for ⟨, , , (1, … , 𝑛)⟩, we first compute the set 𝑆0 of 𝜎 -extensions for ⟨, , ⟩ and next, for each stratum 𝑖 ∈ [1, 𝑛], we compute the set of 𝚖𝚜∕𝚖𝚌𝜎 -extensions 𝑆𝑖 from 𝑆𝑖−1, by discarding the extensions
which to do not satisfy a maximal set/maximal number of constraints in 𝑖.

Example 10. Consider the SWAF derived from the AF Λ of Example 1 by adding the following list of sets of weak constraints
({𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏}, {𝚝 ⇒ 𝑎}, {𝚝 ⇒ 𝑏}, {𝚝 ⇒ 𝑐}). Since each stratum contains only one weak constraint, maximal-set and maximum-

cardinality semantics give the same result. The weak constraints are applied one (set) at a time to discard extensions. After applying
the first constraint the extension containing 𝑎, 𝑏 and 𝑐 is discarded. At the second step only extensions containing 𝑎 are selected from
the ones selected at the first step. At the third step only the extension containing 𝑎 and 𝑏 is selected. Thus, the best/optimal extension
is the one containing exactly 𝑎 and 𝑏.

Note that, assuming that weak constraints are not stratified, we would have the three extensions {𝑎, 𝑏}, {𝑎, 𝑐} and {𝑏, 𝑐} under
both maximal-set and maximum-cardinality preferred and stable semantics. □

The next two theorems state the complexity for SWAF under the maximal-set and maximum-cardinality interpretation of weak
constraints, respectively.

Theorem 4. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.
14

Theorem 5. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Δ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

In light of Theorem 4 and Theorem 5, it follows that the introduction of multiple layers of weak constraints under maximal-

set semantics does not increase the computational complexity, thought it provides a more general and flexible approach to express
constraints. In contrast, in the case of maximal-cardinality semantics, introducing multiple layers of weak constraints generally
increases the complexity w.r.t. a single layer of constraints.

A particular form of SWAF are the ones used in Example 10, where every stratum is a singleton, meaning that weak constraints
define a total order.

Definition 13 (LWAF). A SWAF ⟨, , , (1, ..., 𝑛)⟩ is said to be linearly ordered if every 𝑖 (1 ≤ 𝑖 ≤ 𝑛) contains only one weak
constraint.

Observe that for linearly ordered SWAFs, that we denote by LWAF, 𝐶𝐴𝜎
𝚖𝚜 = 𝐶𝐴𝜎

𝚖𝚌 and 𝑆𝐴𝜎
𝚖𝚜 = 𝑆𝐴𝜎

𝚖𝚌 . Thus, for this class of
constrained AFs, we simply use the notations 𝐶𝐴𝜎


and 𝑆𝐴𝜎


to denote the credulous and skeptical acceptance problems, respectively.

Theorem 6. For any LWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-complete for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-complete for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(iii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Thus, limiting the number of weak constraints in each layer does not result in reducing the complexity bounds under Lukasiewicz’s
logic, i.e., SWAF and LWAF have the same complexity bounds.

Finally, it is worth noting that extending CAF by stratifying the constraints does not make sense as all constraints must be satisfied.

7. CAF and WAF with denial constraints

In several contexts (e.g., database, logic programming, inconsistent knowledge management) constraints are expressed by denial
constraints. In this section, we investigate credulous and skeptical acceptance when constraints are expressed by negative constraints
only. In the following, we use the acronym NCAF (resp., NWAF) to denote a CAF (resp., WAF) where all constraints are defined as
denials.

Example 11. The WAF of Example 3 is an NWAF, since the constraints in  are denials and those in  can be equivalently written
as the denials ¬𝑎 ⇒ 𝚏, ¬𝑏 ⇒ 𝚏, ¬𝑐 ⇒ 𝚏, and ¬𝑑 ⇒ 𝚏. Moreover, if  = ∅ then we obtain an NCAF. □

The following lemma states that for NWAF (and thus NCAF) the semantics of denial constraints under Kleene and Lukasiewicz
logics coincide.

Lemma 3. For any NWAF Υ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, it holds that 𝐾 (Υ) = 𝐿(Υ).

As a consequence, the result of Lemma 2 also holds for NWAF and NCAF under both Lukasiewicz and Kleene semantics as stated
below.

Lemma 4. Let Υ = ⟨, , , ⟩ be a NWAF, 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2, and  ′ ⊆  . Then, under both Kleene and Lukasiewicz
logics, 𝐸1 ⊧  ∪ ′ implies 𝐸2 ⊧  ∪ ′.

The following theorem shows that, if only denial constraints are used, the complexity of the credulous acceptance problem under
preferred semantics does not increase for NCAF w.r.t. that for AF, which is different from what happens for (general) CAF (see
15

Theorem 1). Moreover, the complexity of the skeptical acceptance problem for NCAF does not change w.r.t that for CAF.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Theorem 7. For any NCAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Finally, as stated next, the introduction of weak denial constraints increases the complexity of one level in the polynomial hierarchy
w.r.t. that of NCAF, for credulous acceptance under complete, stable and preferred semantics, as well as for skeptical acceptance under
complete and stable semantics, independently of the chosen logic.

Theorem 8. For any NWAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜 is Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

• 𝑆𝐴𝜎
𝚖𝚜 is Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

Overall, the use of denials makes the two logics equally expressive regardless of the interpretation of constraints as strong or weak
constraints. Moreover, under semi-stable semantics, employing only denials (i.e., considering NWAF) results in a lower complexity
of credulous acceptance compared to the case of general constraints (WAF) under Lukasiewicz logic. In fact, the complexity of NCAF
and NWAF coincide under semi-stable semantics.

8. Encoding preferences through WAF

Several extensions of Dung’s framework for handling preferences over arguments have been proposed [10,11,13,14,27,44,90]. In
this section, after recalling the syntax of preference-based AF (denoted by PAF), we first propose a new semantics for PAF based on
a well-known semantics for Answer-Set Programming (ASP) with preferences, called Answer Set Optimization (ASO)] [34], and then
show that such PAFs can be encoded in WAF.

Definition 14. A Preference-based Argumentation Framework (PAF) is a triple ⟨, , ≻⟩ such that ⟨, ⟩ is an AF and ≻ is a strict
partial order (i.e. an irreflexive, asymmetric and transitive relation) over , called preference relation.

For arguments 𝑎 and 𝑏, 𝑎 ≻ 𝑏 means that 𝑎 is better than 𝑏. As discussed in Section 9, a “best extensions” semantics approach
for PAF has been proposed in [14,71], where classical argumentation semantics are used to obtain extensions of the underlying AF ⟨, ⟩ and then the preference relation ≻ is used to obtain a preference relation ⊒ over such extensions, so that the best extensions
w.r.t. ⊒ are eventually selected. With the same spirit of selecting the best extensions by following an induced relation from the user-

defined preferences, the Answer Set Optimization (ASO) approach has been proposed [34], whose semantics is based on the degree to
which preferences are satisfied. Thus, we propose an intuitive PAF semantics that extends the ASO approach to deal with the fact that
argumentation semantics are 3-valued. Then, we show that any PAF under this approach of handling preferences can be equivalently
rewritten (in terms of extensions) to a WAF under maximal-set semantics.

For any PAF ⟨, , ≻⟩ under ASO semantics, the set of preferences ≻ determine a preference ordering on the set of  -extensions
of the underlying AF ⟨, ⟩, for any semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. First, we need to identify the case where the preference is
satisfied w.r.t. a particular extension. To this end, given a PAF ⟨, , ≻⟩, an  -extension 𝐸 ∈ (⟨, ⟩), and a preference 𝑎 ≻ 𝑏,
then 𝑎 ≻ 𝑏 is said to be satisfied w.r.t. 𝐸 iff 𝑎 ∈ 𝐸 or 𝑏 ∈ 𝐷𝑒𝑓 (𝐸). Thus, it is possible to define the satisfaction degree of 𝑎 ≻ 𝑏

in 𝐸 by setting 𝑑𝐸 (𝑎 ≻ 𝑏) = 1 if 𝑎 ∈ 𝐸 or 𝑏 ∈ 𝐷𝑒𝑓 (𝐸), 𝑑𝐸 (𝑎 ≻ 𝑏) = 0 otherwise. Let ⟨, , {𝑎1 ≻ 𝑏1, … , 𝑎𝑛 ≻ 𝑏𝑛}⟩ be a PAF and
𝐸 ∈ (⟨, ⟩) be an  -extension for ⟨, ⟩ under semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. We say that 𝐸 induces a satisfaction vector
𝐷𝐸 = ⟨𝑑𝐸 (𝑎1 ≻ 𝑏1), … , 𝑑𝐸 (𝑎𝑛 ≻ 𝑏𝑛)⟩, where the position of preferences in the list is determined according to a predefined order (e.g.
the lexicographic order or the order according to which they are listed).

We illustrate the ASO semantics for preferences in the following example.

Example 12. Consider the PAF ⟨ = {𝑎, 𝑏, 𝑐, 𝑑},  = {(𝑎, 𝑏), (𝑏, 𝑎), (𝑐, 𝑑), (𝑑, 𝑐)} {𝑎 ≻ 𝑏, 𝑏 ≻ 𝑐}⟩ where the AF Λ = ⟨, ⟩ is shown in
Fig. 6. Under preferred and stable semantics, for the AF ⟨, ⟩ there are 4 extensions: 𝐸1 = {𝑎, 𝑐}, 𝐸2 = {𝑎, 𝑑}, 𝐸3 = {𝑏, 𝑐}, and
𝐸4 = {𝑏, 𝑑}. Comparing the four extensions with respect to the two preferences, we get the following satisfaction vectors:

• 𝐷𝐸1
= ⟨1, 0⟩, as 𝑑𝐸1

(𝑎 ≻ 𝑏) = 1 (since 𝑎 ∈ 𝐸1), and 𝑑𝐸1
(𝑏 ≻ 𝑐) = 0 (since neither 𝑏 ∈ 𝐸1 nor 𝑐 ∈ 𝐷𝑒𝑓 (𝐸1));

• 𝐷𝐸2
= ⟨1, 1⟩, as 𝑑𝐸2

(𝑎 ≻ 𝑏) = 1 (since 𝑎 ∈ 𝐸2) and 𝑑𝐸2
(𝑏 ≻ 𝑐) = 1 (since 𝑐 ∈ 𝐷𝑒𝑓 (𝐸2));

• 𝐷𝐸3
= ⟨0, 1⟩, as 𝑑𝐸3

(𝑎 ≻ 𝑏) = 0 (since neither 𝑎 ∈ 𝐸3 nor 𝑏 ∈ 𝐷𝑒𝑓 (𝐸3)) and 𝑑𝐸3
(𝑏 ≻ 𝑐) = 1 (since 𝑏 ∈ 𝐸3); and

• 𝐷𝐸4
= ⟨0, 1⟩, as 𝑑𝐸4

(𝑎 ≻ 𝑏) = 0 (since neither 𝑎 ∈ 𝐸4 nor 𝑏 ∈ 𝐷𝑒𝑓 (𝐸4)) and 𝑑𝐸4
(𝑏 ≻ 𝑐) = 1 (since 𝑏 ∈ 𝐸4). □
16

We extend the preorder on satisfaction degrees to preorders on satisfaction vectors and extensions as follows.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Fig. 7. AF ⟨,⟩ underlying PAF Δ of Example 14.

Definition 15 (PAF Semantics). Let Δ = ⟨, , {𝑎1 ≻ 𝑏1, … , 𝑎𝑛 ≻ 𝑏𝑛}⟩ be a PAF, and 𝐸, 𝐹 ∈ (⟨, ⟩) be two  -extensions for ⟨, ⟩
under semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝}. We say that 𝐸 ⊒ 𝐹 iff 𝑑𝐸 (𝑎𝑖 ≻ 𝑏𝑖) ≥ 𝑑𝐹 (𝑎𝑖 ≻ 𝑏𝑖) for each 𝑖 ∈ [1, 𝑛], and write 𝐸 ⊐ 𝐹 iff 𝐸 ⊒ 𝐹 and
𝐹 ⋣ 𝐸. Moreover, the best  -extensions of Δ (denoted as (Δ)) are the extensions 𝐸 ∈ 𝜎(⟨, ⟩) such that there is no 𝐹 ∈ 𝜎(⟨, ⟩)
with 𝐹 ⊐ 𝐸.

Example 13. Continuing with Example 12, comparing the 𝐷𝐸𝑖
-vectors associated with extensions 𝐸𝑖, with 𝑖 ∈ [1..4], we have the 𝐸2

is the best one since 𝐸2 ⊐ 𝐸1, 𝐸2 ⊐ 𝐸3, and 𝐸2 ⊐ 𝐸4. □

Example 14. Consider the PAF Δ = ⟨ = {𝑎, 𝑏, 𝑐},  = {(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ ∧ 𝑥 ≠ 𝑦}, {(𝑎 ≻ 𝑏), (𝑏 ≻ 𝑐), (𝑎 ≻ 𝑐)}⟩. The preferred extensions
for the underlying AF Λ = ⟨, ⟩ (shown in Fig. 7), obtained from Δ by ignoring the preferences, are 𝚙𝚛(Λ) = {𝐸1 = {𝑎}, 𝐸2 = {𝑏},
𝐸3 = {𝑐}}. The satisfaction vector of 𝐸1 , 𝐸2 and 𝐸3 is 𝐷𝐸1

= ⟨1, 1, 1⟩, 𝐷𝐸2
= ⟨0, 1, 1⟩, and 𝐷𝐸3

= ⟨1, 0, 0⟩, respectively. As 𝐸1 ⊐ 𝐸2
and 𝐸1 ⊐ 𝐸3, we have that 𝐸1 is the only best preferred extension of Δ. □

Theorem 9. For any PAF Δ = ⟨, , ≻⟩ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜}, there exists a WAF ΥΔ (derivable from Δ in linear time) s.t.
(Δ) = 𝚖𝚜-∗(ΥΔ).

Proof. Consider the case of Kleene logic. Given a PAF Δ = ⟨, , ≻⟩, we denote by ΥΔ = ⟨, , ∅, Δ⟩ the WAF derived from Δ by
replacing every preference 𝑎 ≻ 𝑏 with the constraint 𝜔𝑎,𝑏 ∶ 𝚝⇒ (𝑏 ⇒ 𝑎). Thus, observe that, for any -extension 𝐸 ∈ (⟨, ⟩) we
have that 𝐸 ⊧ 𝜔𝑎,𝑏 iff 𝑑𝐸 (𝑎 ≻ 𝑏) = 1.

(⇒) Reasoning by contradiction, assume that there exists 𝐸 ∈ (Λ), with Λ = ⟨, ⟩, such that 𝐸 ∈ (Δ) ⧵ 𝚖𝚜-(ΥΔ). So there
must exist 𝐹 ∈ (Λ) ∩ 𝚖𝚜-(ΥΔ) s.t. 𝐹 ⊧ 𝐹 ⊆ Δ, 𝐸 ⊧ 𝐸 ⊆ Δ, and 𝐹 ⊃ 𝐸 . Thus, the satisfaction vectors for 𝐸 and 𝐹 ,
respectively 𝐷𝐸 = ⟨𝑑1

𝐸
, … , 𝑑𝑛

𝐸
⟩ and 𝐷𝐹 = ⟨𝑑1

𝐹
, … , 𝑑𝑛

𝐹
⟩, are such that:

• ∀ 𝑤𝑖 ∈𝐸 , 𝑑𝑖
𝐸
= 𝑑𝑖

𝐹
= 1;

• ∀ 𝑤𝑖 ∈ ⧵𝐸 , 𝑑𝑖
𝐸
= 0;

• ∀ 𝑤𝑗 ∈ ⧵𝐹 , 𝑑𝑗

𝐸
= 𝑑

𝑗

𝐹
= 0;

• ∀ 𝑤𝑗 ∈𝐹 ⧵𝐸 , 𝑑𝑗

𝐸
= 0 and 𝑑𝑗

𝐹
= 1.

Thus 𝐹 ⊐ 𝐸, that is an absurd.

(⇐) Reasoning by contradiction, assume that there exists 𝐸 ∈ (Λ) s.t. 𝐸 ∈ 𝚖𝚜-(ΥΔ) ⧵(Δ). So there must exist 𝐹 ∈ (Λ) ∩(Δ)
s.t. 𝐹 ⊐ 𝐸. This implies that, 𝐹 ⊧ 𝐹 = {𝜔𝑎,𝑏 ∈Δ ∣ 𝑑𝐹 (𝑎 ≻ 𝑏) = 1} and 𝐸 ⊧ 𝐸 = {𝜔𝑎,𝑏 ∈Δ ∣ 𝑑𝐸 (𝑎 ≻ 𝑏) = 1}. Thus, 𝐸 ⊂ 𝐹 and
thus 𝐹 ⊐ 𝐸, that is an absurd.

As by Lemma 1 any constraint under Kleene logic can be equivalently rewritten into a new one under Lukasiewicz logic, the result
also follows under Lukasiewicz logic. □

Example 15. Continuing with the previous example, the WAF derived from Δ is ΥΔ = ⟨, , ∅, Δ = {𝑤1, 𝑤2, 𝑤3}⟩ where:

𝑤1 ∶ 𝚝⇒ (𝑏 ⇒ 𝑎), 𝑤2 ∶ 𝚝⇒ (𝑐 ⇒ 𝑏), and 𝑤3 ∶ 𝚝⇒ (𝚌⇒ 𝚊).
We have that 𝐸1 ⊧ 𝑤1, 𝑤2, 𝑤3, 𝐸2 ⊧ 𝑤2, 𝑤3, while 𝐸3 ⊧ 𝑤1. Thus, 𝐸1 is the only best preferred extension of Δ and the only 𝚖𝚜-𝚙𝚛

extension of ΥΔ. □

9. Related work

We start our discussion of related work by observing that an important difference between the semantics of CAF introduced
in (Coste-Marquis et al. (2006)) [41] and our work concerns the meaning of constraints. Indeed, constraints in [41] (under Kleene
logic) are imposed on the admissibility of sets of arguments (i.e., over admissible sets) that are at the basis of  -extensions, with
 ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜}. As a consequence, a drawback of this approach is that  -extensions of a given CAF are no longer guaranteed
to be  -extensions of the underlying AF, that is, we may have 𝐸 ∈ (⟨, , ⟩), but 𝐸 ∉ (⟨, ⟩). Differently, the semantics
proposed in our work under Kleene (as well as under Lukasiewicz) logic prescribes  -extensions that are  -extensions of underlying
AF.

Besides being related to the proposals for CAF in [41,17], our work is also related to the approach presented in [29] that provides a
method for generating non-empty conflict-free extensions for CAFs. Constraints have been also used in the context of dynamic AFs to
refer to the enforcement of some change [46]. In this context, extension enforcement aims at modifying an AF to ensure that a given
set of arguments becomes (part of) an extension for the chosen semantics [23,42,93,81]. This is different from our approach where
integrity constrains are used to discard unfeasible solutions (extensions), without enforcing that a new set of arguments becomes an
17

extension.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Weak constraints allow for selecting “best” or “optimal” extensions satisfying some conditions on arguments, if possible. This can
be viewed as expressing a kind of preference over the set of extensions. Dung’s framework has been extended in several ways for
allowing preferences over arguments [11,70,78]. Two main approaches have been proposed to handle preferences in argumentation,
where a Preference-based Argumentation Framework (PAF) is defined as a triple ⟨, , ≻⟩ (cf. Definition 14). The first approach
considers AF-based semantics and consists in first defining a defeat relation 𝑖 that combines attacks in  and preferences in ≻,
and then applying the usual semantics on the AF ⟨, 𝑖⟩. Here 𝑖 (with 𝑖 ∈ [1, 4]) denotes one of the four mappings proposed in
the literature [11,14,71]. However, in some cases these semantics fail to capture the expected meaning as, in some cases, extensions
of the resulting PAF could not be conflict-free w.r.t. the original AF. We point out that for these PAF semantics the complexity of
acceptance problems does not increase as the mapping to AF (i.e., building 𝑖) is polynomial time. Anyway, it is clear that any PAF ⟨, , ≻⟩ under this approach can be encoded into a WAF ⟨, 𝑖, ∅, ∅⟩ under any semantics.

The second approach to handle preferences relies on a “best extensions” semantics for PAF [14,71]. In particular, given a PAF ⟨, , ≻⟩, classical argumentation semantics are used to obtain extensions of the underlying AF ⟨, ⟩, and then the preference
relation ≻ is used to obtain a preference relation ⊒ over such extensions, so that the best extensions w.r.t. ⊒ are eventually selected.
Clearly, ⊒ is not trivial for multiple-status semantics only (for the grounded semantics, its extension is trivially the best one). Even if
not excluded from the complexity standpoint, as the semantics of this approach is to compare pairs of extensions to filter-out those
that are not best, it is not straightforward to encode a PAF into a WAF sharing the same underlying AF and having the same set of
extensions.

Preferences can be also expressed in value-based AFs [25,50], where each argument is associated with a numeric value, and a set of
possible orders (preferences) among the values is defined. In [52] weights are associated with attacks, and new semantics extending
the classical ones on the basis of a given numerical threshold are proposed. [43] extends [52] by considering other aggregation
functions over weights apart from sum. Except for weighted solutions under grounded semantics (that prescribes more than one
weighted solution), the complexity bounds of credulous and skeptical reasoning in the above-considered frameworks are lower or
equal than those of WAFs, which suggests that WAFs are more expressive and can be used to model those frameworks. In this
regard, we have proposed a novel (3-valued) PAF semantics based on the (2-valued) ASO semantics for answer set programs [34].
Differently from [34], w.l.o.g. we have not considered preferences that are conditioned by a boolean conjunctive formula in the
body, e.g. 𝑎 ≻ 𝑏 ← 𝑐 ∧ ¬𝑑. In fact, these preferences can be encoded by imposing and additional condition concerning the body, that
is 𝑐 ∈ 𝐸 ∧ 𝑑 ∈ 𝐷𝑒𝑓 (𝐸) in the case of the preference in the previous example. ASO preferences can be also generalized to express
meta-preferences specifying a sequence of pairwise disjoint sets of preferences. In the same spirit, a SWAF can be used to encode those
preferences as done in the specific case of a single set of preferences. Finally, preferences in ASO can be also modeled as preferences
of the form 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘 (e.g. 𝑎 ≻ 𝑏 ≻ 𝑐) where 𝐶𝑖s are boolean formulas built using arguments and standard connectives ∧, ∨,
and ¬. However, to simplify the presentation and the translation to WAF, we assumed w.l.o.g. that preferences 𝐶1 ≻ 𝐶2 ≻ ⋯ ≻ 𝐶𝑘

are rewritten as 𝐶𝑖 ≻ 𝐶𝑗 such that 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ [1, 𝑘].
An interesting extension of Dung’s framework with epistemic constraints called Epistemic Argumentation Framework (EAF) has

been recently proposed [89]. An epistemic constraint is a propositional formula over labeled arguments ({𝐢𝐧(𝑎), 𝐨𝐮𝐭(𝑎), 𝐮𝐧𝐝𝐞𝐜(𝑎) ∣
𝑎 is an argument})4 extended with the modal operators 𝐊 and 𝐌. Intuitively, 𝐊 𝜙 (resp. 𝐌𝜙) states that the considered agent believes
that 𝜙 is always (resp. possibly) true. The semantics of an EAF is given by the set of so-called  -epistemic labelling sets. Intuitively, an
 -epistemic labelling set is a collection of  -labellings that reflects the belief of an agent. More in detail, every  -epistemic labelling

set consists of  -labellings of the underlying AF and it is a maximal set of  -labellings that satisfy the epistemic constraint. Epistemic
constraints without modal operators play the same role of strong constraints, that is, they play the same role of strong constraints in
CAF. In Appendix D, we formally show that any EAF without modal operators (or with restricted modal operators), that is an AF with
constraints defined over the alphabet of arguments’ labels [21], can be rewritten into an equivalent CAF with the semantics defined
in this paper.

Constraints having the form of explicit acceptance conditions over arguments have been firstly explored in the Abstract Dialectical
Framework (ADF) [36], whose semantics can be captured by the (monotonic three-valued) possibilistic logic [67]. In particular,
the semantics of an ADF 𝐷 relies on a characteristic operator, namely Γ𝐷 , which takes as an input a three-valued interpretation
𝜈 and returns an interpretation by considering all possible two-valued completions of 𝜈.5 To explain the connection between ADF
and CAF, let us illustrate how the CAF Ω = ⟨, , ⟩ introduced in Section 1, where ⟨, ⟩ is the AF shown in Fig. 1(a) and
 = {𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏} is the considered strong constraint, can be modeled through an ADF of the form 𝐷 = ⟨𝑆 = {𝑎, 𝑏, 𝑐}, 𝐿 =
{(𝑥, 𝑦) ∣ 𝑥, 𝑦 ∈ 𝑆 ∧ 𝑥 ≠ 𝑦}, 𝐶 = {𝐶𝑎 = 𝑎 ∧ ¬(𝑏 ∧ 𝑐), 𝐶𝑏 = 𝑏 ∧ ¬(𝑎 ∧ 𝑐), 𝐶𝑐 = 𝑐 ∧ ¬(𝑎 ∧ 𝑏)}⟩ whose set of complete interpretations coincides
with the set of complete extensions of Ω. The fact that CAF can be modeled by ADF, and in particular that credulous and skeptical
reasoning in CAF can be reduced to ADF is backed by the computational complexity of the two frameworks [92]. In fact, ADF is
at least as expressive as CAF under complete, preferred and stable semantics, and strictly more expressive (one level higher in the
polynomial hierarchy) for credulous acceptance under complete semantics (which is Σ𝑝

2-complete for ADF) and skeptical acceptance
under preferred semantics (Π𝑝

3-complete for ADF). As for the semi-stable semantics, to the best of our knowledge, the complexity of
semi-stable semantics for ADF has not been studied yet. Although a reduction from CAF to ADF is not ruled out by our complexity
analysis, providing such a mapping means translating CAF constraints which work at the global level of a set of extensions to (local)
acceptance conditions that are specifically defined for arguments—this deserves more investigation, and is left for future work.

4 𝐢𝐧, 𝐨𝐮𝐭 , and 𝐮𝐧𝐝𝐞𝐜 are synonyms of 𝚝𝚛𝚞𝚎, 𝚏𝚊𝚕𝚜𝚎 and 𝚞𝚗𝚍𝚎𝚏, respectively.
18

5 The interested reader can find an overview of ADF’s syntax and semantics in Appendix E.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

However, it is worth mentioning that under both complete and stable semantics, ADF is not as expressive as WAF from a complexity
standpoint. In fact, skeptical acceptance under complete semantics is coNP-complete in ADF [33] while it is Π𝑝

2-complete for WAF
(cf. Theorem 2). Moreover, under stable semantics, both credulous and skeptical acceptance problems in ADF are one lever lower
in the polynomial hierarchy w.r.t. WAF (the same happens for CAF). This suggests that WAF cannot be encoded through ADF under
complete and stable semantics. Also, a reduction from ADF to WAF is not ruled out by our complexity analysis, though in this case
an approach to translate (local) acceptance condition over arguments to global constraints needs to be devised. Finally, analogously
to what is done in this paper concerning the exploration of less expressive subclasses within WAF and CAF (e.g. denial constraints),
similar analyses have been conducted within ADF. For instance, the subclass called bipolar ADFs (BADFs) has been shown to exhibit
complexity comparable to that of classical AFs, as is it possible to avoid considering all the possible two-valued completions through
the application of Kleene logic [24]. Exploring the connection between subclasses of WAF/CAF and ADF is another possible direction
for future work.

As mentioned earlier, with the aim of allowing for a more straightforward and compact encoding of knowledge w.r.t. AF, several
frameworks extending AF have been proposed, such as the argumentation framework with collective attacks (SETAF) [80,62,54,55].
SETAF generalizes AF by allowing for collective attacks, i.e., attacks from non-empty sets of arguments to a single argument. Intu-

itively, a collective attack from set a {𝑎, 𝑏} to argument 𝑐 means that neither 𝑎 nor 𝑏 is strong enough to defeat 𝑐 by themselves. To
illustrate the semantics of SETAF, let us consider again the situation of Example 1, which can be modeled by the CAF Ω = ⟨, , ⟩,
where ⟨, ⟩ is the AF shown in Fig. 1(a) and  = {𝜅 = 𝑎 ∧ 𝑏 ∧ 𝑐 ⇒ 𝚏} is a strong constraint. This situation can be also modeled by
the SETAF ⟨{𝑎, 𝑏, 𝑐}, {({𝑎, 𝑏}, 𝑐), ({𝑎, 𝑐}, 𝑏), ({𝑏, 𝑐}, 𝑎)}⟩, whose set of preferred extensions is {{𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}}. It is worth noting
that, the notion of collective attacks can also be represented in ADF by using proper acceptance conditions [75,85,54]. As for ADF,
SETAF is not as expressive as WAF from the complexity viewpoint, suggesting that WAF cannot be encoded through SETAF.

Finally, concerning the hierarchy of constraints in SWAF, we point out that there is a connection with the preferred subtheory
approach introduced in [32], where a default theory is a tuple (𝑇1, ..., 𝑇𝑛) such that each 𝑇𝑖 is a set of classical first order formulas
with the property that information in 𝑇𝑖 is more reliable than that in 𝑇𝑗 if 𝑖 < 𝑗. This is analogous to the way strata in SWAFs are
defined, as weak constraints in a stratum 𝑖 have higher priority than those in a stratum 𝑗 > 𝑖.

We believe that the findings of this study may also apply to other well-known related AI fields, such as logic programming with
3-valued semantics [87,40,4], computing repairs and consistent answers over inconsistent data [15,61,76,77] (see e.g. [31,57,65] for
the relationship between logic programming and consistent query answering), and integration of different AI formalisms with (strong
and weak) constraints and preferences [35,38,83].

10. Conclusions and future work

We have introduced a general argumentation framework where both strong and weak constraints can be easily expressed. Our
complexity analysis shows how the several forms of constrains (including restricted forms, e.g., denials) impact on the complexity
of credulous and skeptical reasoning. It turns out that constraints, especially weak ones, generally increase the expressivity of AFs.
In fact, WAFs allow us to model optimization problems such as, for instance, Min Coloring and Maximum Satisfiability, where some
kind of preferences (e.g., use the minimum number of colors) are expressed on solutions. This is not possible for AFs/CAFs whose
expressivity is lower than that of WAFs (AFs/CAFs can capture simpler problems such as 𝑘-coloring and SAT).

We envisage implementations of the proposed WAF semantics by exploiting ASP-based systems and analogies with logic programs
with weak constraints [37,66] (the relationship between the semantics of some frameworks extending AF and that of logic programs
has been investigated in [4]). For WAFs, DLV system [9] could be used for computing maximum-cardinality stable semantics.

Future work will be also devoted to considering more general forms of constraints, not only using variables ranging on the sets of
arguments, but also constraints allowing to express conditions on aggregates [8] (e.g., at least 𝑛 arguments from a given set 𝑆 should
be accepted/rejected). We believe that the basic idea of adding weak constraints could be also applicable for structured argumentation
formalisms [28,64], which is another direction for future research.

Finally, given the inherent nature of argumentation and the typical high computational complexity of most of the reasoning
tasks, there have been several efforts toward the investigation of incremental techniques that use AF solutions (e.g., extensions,
skeptical acceptance) at time 𝑡 to recompute updated solutions at time 𝑡 +1 after that an update (e.g., adding/ removing an attack) is
performed [2,46]. These approaches have been extended to argumentation frameworks more general than AFs [3,1]. Following this
line of research, we plan to investigate incremental techniques for recomputing CAF and WAF semantics after performing updates
consisting of changes to the AF component or to the sets of strong and weak constraints.

CRediT authorship contribution statement

Gianvincenzo Alfano: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis, Con-

ceptualization. Sergio Greco: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal analysis,
Conceptualization. Domenico Mandaglio: Writing – review & editing, Writing – original draft, Methodology, Investigation, Formal
analysis, Conceptualization. Francesco Parisi: Writing – review & editing, Writing – original draft, Methodology, Investigation, For-

mal analysis, Conceptualization. Irina Trubitsyna: Writing – review & editing, Writing – original draft, Methodology, Investigation,
19

Formal analysis, Conceptualization.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

The authors wish to thank the anonymous referees for providing detailed comments and suggestions that helped to substantially
improve the paper. Moreover, the authors acknowledge the support from i) PNRR project FAIR - Future AI Research (PE00000013),
Spoke 9 - Green-aware AI, under the NRRP MUR program funded by the Next Generation EU; ii) PNRR project SERICS (PE00000014),
under the NRRP MUR program funded by the Next Generation EU; iii) PNRR project Tech4You (ECS00000009) - Spoke 6, under the
NRRP MUR program funded by the Next Generation EU; and iv) MUR project PRIN 2022 EPICA (H53D23003660006), Enhancing
Public Interest Communication with Argumentation, funded by the European Union - Next Generation EU.

Appendix A. Proofs

In this appendix we provide the proofs not already given in the core of the paper.

To ease readability, we restate the results and organize them in sections by following the order used in the core of the paper.

Since some proofs use results from disjunctive logic programs (DLPs) and logic programs with weak constraints, in Appendix B we
recall DLPs and needed results, whereas in Appendix C we introduce logic programs with weak constraints, and show their relationship
with WAFs and DLPs. In Appendix D, we show that any EAF without modal operators can be rewritten into an equivalent CAF with
the semantics defined in the paper. Finally, in Appendix E we recall the Abstract Dialectical Framework [36], which is discussed in
the related work.

For a better understanding of some concepts used in the appendix, we introduce some lemmas and additional examples.

A.1. WAF with maximal-set semantics

We start by introducing three technical lemmas whose results will be used in the following.

Lemma 5. Let Υ = ⟨, , , ⟩ be a WAF, and let 𝐸 be a set of arguments. Deciding whether 𝐸 ∈ 𝚖𝚜-𝚌𝚘∗(Υ) (or 𝐸 ∈ 𝚖𝚜-𝚜𝚝∗(Υ)) is in
𝑐𝑜𝑁𝑃 .

Proof. Consider the complementary problem: decide whether 𝐸 is not a maximal-set complete (resp., stable) extension for Υ (under
Lukasiewicz or Kleene logic). A guess-and-check strategy to decide this problem is as follows. Guess a set 𝑆 ⊆  and check that (i) 𝑆
is a complete (resp., stable) extension for ⟨, , ⟩ and (ii) the set  ′ = {𝑤 ∈ | 𝐸 ⊧ 𝑤} is such that  ′ ⊂  ′′ = {𝑤 ∈ | 𝑆 ⊧ 𝑤}
(that is,  ′ is not maximal). The complexity of checking (i) is polynomial for both complete and stable semantics, since both checking
whether 𝐸 is a complete (resp., stable) extension for ⟨, ⟩ and checking whether 𝐸 ⊧  can be accomplished in polynomial time.
Checking (ii) is in PTIME too. Therefore the complementary problem is in 𝑁𝑃 , from which the statement follows. □

The following lemma states a result analogous to that of Lemma 2 but for the case of WAF (instead of CAF).

Lemma 6. Let Υ = ⟨, , , ⟩ be a WAF and 𝐸1, 𝐸2 ∈ 𝚌𝚘𝐾 (⟨, , ⟩) with 𝐸1 ⊆ 𝐸2. Then, for any 𝜔 ∈ under Kleene logic, 𝐸1 ⊧ 𝜔

implies 𝐸2 ⊧ 𝜔.

Proof. Firstly recall that, given two complete extensions 𝐸1 and 𝐸2 for Ω = ⟨, , ⟩, 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2).
Under Kleene logic every weak constraint 𝜔 can be rewritten in standard form as a disjunction of conjunction of literals of the form
𝜔 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧ 𝓁1
𝑛1
) ∨⋯ ∨ (𝓁𝑘

1 ∧⋯ ∧ 𝓁𝑘
𝑛𝑘
). If 𝐸1 ⊧ 𝜔, it means that there must be a value 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧ 𝓁𝑖
𝑛𝑖
).

Moreover, as 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. □

Lemma 7. Let Υ = ⟨, , , ⟩ be a WAF, and let 𝐸 be a set of arguments. Deciding whether 𝐸 ∈ 𝚖𝚜-𝚙𝚛𝐾 (Υ) is in 𝑐𝑜𝑁𝑃 .

Proof. Consider the complementary problem, that is, deciding whether 𝐸 is not a maximal-set preferred extension for Υ under Kleene
logic. This problem can be decided as follows. Guess a set 𝑆 ⊆  and check that (i) 𝑆 is a complete extension for ⟨, , ⟩ and (ii)
 ′ = {𝑤 ∈  | 𝐸 ⊧ 𝑤} ⊂  ′′ = {𝑤 ∈  | 𝑆 ⊧ 𝑤}. The fact that it suffices to check that 𝑆 is a complete (rather than preferred)
20

extension for ⟨, , ⟩ comes from the results of Lemma 2 and Lemma 6. Both (i) and (ii) can be decided in PTIME, as checking

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

whether a set of arguments is a complete extension for ⟨, ⟩ is in P and this holds even if we additionally check satisfaction of the
sets of constraints. Thus, this problem is in 𝑁𝑃 . Consequently, deciding whether 𝐸 is a maximal-set preferred extension for Υ under
Kleene logic is in 𝑐𝑜𝑁𝑃 . □

Theorem 2. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿, and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Membership.) The membership results come from the general case of SWAF (cf. Theorem 4) as any WAF is a SWAF with a
single stratum of constraints.

(Hardness.) All the lower bound results, except those for 𝐶𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝, 𝑆𝐴𝐿

𝚖𝚜−𝚙𝚛, and 𝑆𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝 derive from the fact that they hold for WAF ⟨, , , ⟩ where  and  are sets of denial constraints, that is for NWAF (cf. Theorem 8).

The hardness results for 𝐶𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝, 𝑆𝐴𝐿

𝚖𝚜−𝚙𝚛, and 𝑆𝐴𝐿
𝚖𝚜−𝚜𝚜𝚝 are obtained by mapping disjunvtive datalog programs under partial

stable model semantics [59] to WAFs under complete semantics and Lukasiewicz logic.

It is important to recall that for disjunctive datalog programs under partial stable model semantics the complexity of credulous
and skeptical acceptance are as follows [59]:

• 𝐶𝐴 is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚙𝚜,𝚜𝚝,𝚖𝚜}, and (𝑖𝑖𝑖) Σ𝑝

3-complete for  = 𝚕𝚜.

• 𝑆𝐴 is: (𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚜,𝚜𝚝}, and (𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚖𝚜,𝚕𝚜}.

where 𝚙𝚜, 𝚜𝚝, 𝚖𝚜 and 𝚕𝚜 denote the semantics partial stable, (total) stable, maximal stable, and least-undefined stable, respectively;

Since every disjunctive datalog programs under partial (resp., total, maximal, least-undefined) stable model semantics can be
mapped into an equivalent WAF under complete (resp. stable, preferred, semi-stable) semantics and Lukasiewicz logic, the hardness
results follow. We show how disjunctive logic programs can be mapped to normal logic programs with constraints and then to WAFs
in Appendix C. The partial stable semantics for normal and disjunctive logic programs are recalled in Appendix B. □

A.2. WAF with maximum-cardinality semantic

We first introduce a technical lemma which will be used in the proof of Theorem 3.

Lemma 8. Given a WAF Υ = ⟨, , , ⟩, and a natural number 𝑘 ≤ ||, deciding whether there exists a complete (resp., stable, preferred,
semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘 constraints of  is in

• 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under Lukasiewicz logic.

• 𝑁𝑃 (resp., 𝑁𝑃 , 𝑁𝑃 , Σ𝑝

2) under Kleene logic.

The result still holds if it is required that the extension 𝐸 contains a given argument 𝑎 ∈, that is for the problem of deciding whether there
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘 constraints of  .

Proof. First, consider Lukasiewicz logic. Guess a set 𝐸 ⊆  and check that (𝑖) 𝐸 is a complete (resp., stable, preferred, semi-stable)
extension in PTIME (resp., PTIME, 𝑁𝑃 , 𝑁𝑃) [45,49,51], and (𝑖𝑖) 𝐸 satisfies at least 𝑘 constraints of  in PTIME. Thus, the considered
problem is in 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under complete (resp., stable, preferred, semi-stable) semantics.

As for the Kleene logic, the difference with respect to the above-described procedure is that in the case of the preferred semantics
the result of Lemma 6 can be used. Thus, at step 𝑖), it suffices to check that 𝐸 is a complete extension rather than preferred, since if
there is a complete extension satisfying at least 𝑘 constraints, then there is a preferred extension satisfying at least 𝑘 constraints.

Finally, consider the case where we additionally require that the extension 𝐸 contains an argument 𝑎 ∈. The results continue
to hold in such a case, since what is said earlier continues to hold if we start by guessing a set 𝐸 ⊆  containing 𝑎. □

Theorem 3. For any WAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Θ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and
21

(iv) Σ𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Θ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Θ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Membership.) In the following, we use 𝑛 to denote the number of constraints, i.e. 𝑛 = ||.
• (𝐶𝐴∗

𝚖𝚌-𝚌𝚘, 𝐶𝐴∗
𝚖𝚌-𝚜𝚝, 𝑆𝐴∗

𝚖𝚌-𝚌𝚘 and 𝑆𝐴∗
𝚖𝚌-𝚜𝚝).

We prove the results only for 𝐶𝐴∗
𝚖𝚌 , as for each semantics  ∈ {𝚌𝚘,𝚜𝚝} the complexity of the complementary problem of

𝑆𝐴∗
𝚖𝚌 , that is checking whether there exists a maximum-cardinality  -extension not containing 𝑎, can be shown by reasoning

analogously to the case of 𝐶𝐴𝚖𝚌 .

We first call an NP oracle to check that ⟨, , ⟩ admits a complete (resp., stable) extension containing 𝑎 (this corresponds to
checking credulous acceptance for a CAF, which is in NP for complete and stable semantics). Then, we perform a binary search
in [0, 𝑛] to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the extensions of ⟨, , ⟩. In particular, in the
binary search we use an NP oracle to decide whether there exist a complete (resp., stable) extension of ⟨, , ⟩ satisfying at
least 𝑘 constraints (Lemma 8), where 𝑘 is the middle value in the search interval. The number of calls to the oracle is bounded
by 𝑂(𝑙𝑜𝑔 𝑛), as at the first step the search space is [0, 𝑛] and we call the oracle with 𝑘1 = 𝑛∕2, at the second step the search space
is one half of the previous step (either [0, 𝑘1 − 1] or [𝑘1, 𝑛], with 𝑘2 = (𝑘1 − 1)∕2 or 𝑘2 = |(𝑚 − 𝑘1)∕2), and so on. Finally, given
the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the extensions of ⟨, , ⟩, we use another call to an NP oracle to
decide whether there exists a complete (resp., stable) extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints
(as stated in Lemma 8, checking this is still in NP). Therefore, deciding whether there is a maximum-cardinality complete (resp.
stable) extension containing 𝑎 is in Θ𝑝

2.

• (𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛). Using the result of Lemma 8, the Θ𝑝

2 algorithm for 𝐶𝐴𝐾
𝚖𝚌-𝚌𝚘 also applies to the case of preferred semantics under Kleene

logic.

• (𝑆𝐴𝐾
𝚖𝚌-𝚙𝚛).

Consider the complementary problem of 𝑆𝐴𝐾
𝚖𝚌-𝚙𝚛, that is checking whether there exists a maximum-cardinality 𝚙𝚛-extension not

containing 𝑎. We first show that this problem is in Θ𝑝

3.

First, call an NP oracle to check that ⟨, , ⟩ admits a preferred extension (this has the same complexity of checking credulous
acceptance for a CAF, which is in NP for preferred semantics under Kleene logic). Then, we perform a binary search in [0, 𝑛] to
find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the preferred extensions of ⟨, , ⟩. In particular, in the
binary search we use an NP oracle to decide whether there exist a preferred extension of ⟨, , ⟩ satisfying at least 𝑘 constraints
under Kleene logic (Lemma 8), where 𝑘 is the middle value in the search interval. Finally, given the maximum number 𝑘𝑚𝑎𝑥 of
constraints that are satisfied by the extensions of ⟨, , ⟩, we use a call to a Σ𝑝

2 oracle to decide whether there exist a preferred
extension of ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints. Observe that deciding whether there exist a
preferred extension of ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘 constraints is in Σ𝑝

2. In fact, differently from the case of
Lemma 8, where we require that argument 𝑎 is contained in the extension, here the result of Lemma 6 cannot be used. To show
the membership is in Σ𝑝

2, it suffices to consider the following procedure: guess a set 𝐸 ⊆  not containing 𝑎 and check that (𝑖) 𝐸

is a preferred extension (in 𝑁𝑃), and (𝑖𝑖) 𝐸 satisfies at least 𝑘 constraints of  (in PTIME). Therefore, the considered problem
is Σ𝑝

2 under preferred semantics and, thus, deciding whether there is a maximum-cardinality preferred extension not containing
𝑎 is in Θ𝑝

3. Since Θ𝑝

3 is closed under complement, the result follows.

• (𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛 and 𝑆𝐴𝐿

𝚖𝚌-𝚙𝚛).

We prove the results only for 𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛, as the complexity of the complementary problem of 𝑆𝐴𝐿

𝚖𝚌-𝚙𝚛, that is checking whether
there exists a maximum-cardinality 𝚙𝚛-extension not containing 𝑎, can be shown reasoning analogously to the case of 𝐶𝐴𝚖𝚌-𝚙𝚛.

We first call a Σ𝑝

2 oracle to check that ⟨, , ⟩ admits a preferred extension containing 𝑎 (this corresponds to checking credulous
acceptance for a CAF, which is in Σ𝑝

2 for preferred semantics under Lukasiewicz logic). Then, we perform a binary search in [0, 𝑛]
to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are satisfied by the preferred extensions of ⟨, , ⟩. In the binary search,
we can use a Σ𝑝

2 oracle to decide whether there exist a preferred extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘
constraints (Lemma 8). The number of calls to the oracle is bounded by 𝑂(𝑙𝑜𝑔 𝑛). Finally, we use another call to Σ𝑝

2 oracle to
decide whether there exist a preferred extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints (as stated in
Lemma 8, checking this is still in Σ𝑝

2). Therefore, deciding whether there is a maximum-cardinality preferred extension containing
𝑎 is in Θ𝑝

3.

• (𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝 and 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝). We prove the results only for 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝, as the complexity of the complementary problem of 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝,
that is checking whether there exists a maximum-cardinality  -extension not containing 𝑎, can be shown reasoning analogously
to 𝐶𝐴∗

𝚖𝚌-𝚜𝚜𝚝.

The proof for 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝 is analogous to that for 𝐶𝐴𝐿

𝚖𝚌-𝚙𝚛. We first call an Σ𝑝

2 oracle to check that ⟨, , ⟩ admits a semi-stable
extension containing 𝑎 (this corresponds to checking credulous acceptance for a CAF, which is in Σ𝑝

2 for semi-stable semantics
under Lukasiewicz logic). Then, we perform a binary search in [0, 𝑛] to find the maximum number 𝑘𝑚𝑎𝑥 of constraints that are
satisfied by the semi-stable extensions of ⟨, , ⟩. In the binary search, we can use a Σ𝑝

2 oracle to decide whether there exist a
semi-stable extension of ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘 constraints (Lemma 8). The number of calls to the oracle
22

is bounded by 𝑂(𝑙𝑜𝑔 𝑛). Finally, we use another call to Σ𝑝

2 oracle to decide whether there exist a semi-stable extension of ⟨, , ⟩

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

containing 𝑎 and satisfying at least 𝑘𝑚𝑎𝑥 constraints (Lemma 8). Therefore, deciding whether there is a maximum-cardinality
semi-stable extension containing 𝑎 is in Θ𝑝

3.

(Hardness.) We now prove the hardness results.

- (𝐶𝐴∗
𝚖𝚌−𝚜𝚝 and 𝑆𝐴∗

𝚖𝚌−𝚜𝚝). The hardness results derive from analogous results for logic programs with weighted weak constraints,
stating that the complexity credulous and skepical reasoning in logic programs with weighted weak constraints is Θ𝑝

2 -complete
[37] (Theorem 21). In fact, since every logic program 𝐿𝑃 under total stable model semantics can be translated into an AF Λ,
where the set of stable models of 𝐿𝑃 (restricted to positive literals) coincide with the set of stable extensions of Λ [40], a logic
program with strong and weak constraints (𝐿𝑃 , , ) can be translated into an equivalent WAF ⟨, , ′,  ′⟩, from which the
result follows.

- (𝐶𝐴∗
𝚖𝚌−𝚌𝚘 and 𝑆𝐴∗

𝚖𝚌−𝚌𝚘). The hardness result follows from the Θ𝑝

2-complete problem 𝐶𝐴∗
𝚖𝚌−𝚜𝚝 for WAF. Given a WAF ⟨, , , ⟩,

𝐸 ∈ 𝚖𝚌-𝚜𝚝∗(Υ) iff 𝐸 ∈ 𝚖𝚌-𝚌𝚘∗(Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, ⟩ and ′′ = {𝚝⇒ 𝑎 ∨¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴∗
𝚖𝚌-𝚜𝚝(Υ, 𝑔) is true

iff 𝐶𝐴∗
𝚖𝚌-𝚌𝚘(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚌𝚘(Υ
′, 𝑔) is true.

- (𝐶𝐴𝐾
𝚖𝚌−𝚙𝚛). The hardness result follows from the Θ𝑝

2-complete problem 𝐶𝐴𝐾
𝚖𝚌−𝚜𝚝 for WAF. Given a WAF ⟨, , , ⟩, 𝐸 ∈

𝚖𝚌-𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚖𝚌-𝚙𝚛𝐾 (Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, ⟩ and ′′ = {𝚝⇒ 𝑎 ∨ ¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴𝐾
𝚖𝚌-𝚜𝚝(Υ, 𝑔) is true iff

𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛(Υ

′, 𝑔) is true.

- (𝐶𝐴𝐿
𝚖𝚌-𝚙𝚛, 𝐶𝐴∗

𝚖𝚌-𝚜𝚜𝚝, 𝑆𝐴∗
𝚖𝚌-𝚙𝚛 and 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝). The hardness result derives from the fact that they hold for any WAF ⟨, , , ⟩
where  = ∅, that is for CAF (cf. Theorem 1). □

A.3. WAF with stratified weak constraints

In this section, we provide the proofs of Theorem 4 and Theorem 5.

Theorem 4. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜- is: (𝑖) Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-hard and in Σ𝑝

3 for  = 𝚙𝚛 and 𝜎 = 𝐿,

(𝑖𝑖𝑖) Σ𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and

(𝑖𝑣) Σ𝑝

3-complete for  = 𝚜𝚜𝚝 and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚜- is: (𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 = 𝐿, and

(𝑖𝑖𝑖) Π𝑝

3-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Hardness.) The lower bound results derive from the fact that they hold for any SWAFs ⟨, , , (1 , … , 𝑛)⟩ where 𝑛 = 1,
that is, for WAFs (cf Theorem 2).

(Membership.) We now provide the membership results for each considered semantics and problem. Let Υ = ⟨, , , (1, … , 𝑛)⟩
be a SWAF and 𝑎 ∈ the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Υ.

• (𝐶𝐴∗
𝚖𝚜-𝚌𝚘 and 𝐶𝐴∗

𝚖𝚜-𝚜𝚝). We first prove that deciding whether 𝐸 is a maximal-set complete (resp., stable) extension for Υ (under
Lukasiewicz or Kleene logic) is in coNP. A guess-and-check strategy to decide the complementary problem is as follows. Guess a
set 𝑆 ⊆  and an index 𝑗 ∈ [1, 𝑛] and check that (i) 𝑆 is a complete (resp., stable) extension for ⟨, , ⟩ and (ii) for each 𝑖 ∈ [1, 𝑗]
the sets  ′

𝑖
= {𝑤 ∈𝑖 | 𝐸 ⊧ 𝑤} and  ′′

𝑖
= {𝑤 ∈𝑖 | 𝑆 ⊧ 𝑤} are such that  ′

𝑘
= ′′

𝑘
with 𝑘 ∈ [1, 𝑗 − 1] and  ′

𝑗
⊂  ′′

𝑗
(that is,

 ′
𝑗

is not maximal w.r.t the 𝑗-th stratum). The complexity of checking (i) is polynomial for both complete and stable semantics,
since checking whether 𝐸 is a complete (resp., stable) extension for ⟨, ⟩ and checking whether 𝐸 ⊧  can be accomplished
in polynomial time. Checking (ii) is in PTIME too. Therefore, the problem of deciding whether 𝐸 is not a maximal-set complete
(resp., stable) extension is in NP, and thus the complementary problem is in coNP.

Given this, to prove that 𝐶𝐴∗
𝚖𝚜-𝚌𝚘 (resp., 𝐶𝐴∗

𝚖𝚜-𝚜𝚝) is in Σ𝑝

2, it suffices to consider the following guess-and-check strategy: guess
a set 𝐸 ⊆  of arguments containing 𝑎 and check that 𝐸 is a maximal-set complete (resp. stable) extension for Υ by using the
above-shown coNP oracle. Thus 𝐶𝐴∗

𝚖𝚜-𝚌𝚘 (resp. 𝐶𝐴∗
𝚖𝚜-𝚜𝚝) is in Σ𝑝

2.

• (𝐶𝐴𝐾
𝚖𝚜-𝚙𝚛 and 𝑆𝐴𝐾

𝚖𝚜-𝚙𝚛). We show that, given a SWAF Υ = ⟨, , , (1, … , 𝑛)⟩, it is the case that 𝐸 ∈ 𝚖𝚜-𝚙𝚛𝐾 (Υ) iff 𝐸 ∈
𝚖𝚜-𝚌𝚘𝐾 (Υ′) where Υ′ = ⟨, , , ( ′

1, 1, 2, … , 𝑛)⟩ with  ′
1 = {𝚝 ⇒ 𝑥 ∣ 𝑥 ∈ }. First recall that, by Lemma 2 we have

that 𝚙𝚛𝐾 (⟨, , ⟩) ⊆ 𝚌𝚘𝐾 (⟨, , ⟩). Then, since the constraints in  ′
1 select from the extensions in 𝚌𝚘𝐾 (⟨, , ⟩) those

that are maximal w.r.t. ⊆ (i.e.,  ′
1 has the effect filtering out the preferred extensions), we have that 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) =
𝚙𝚛𝐾 (⟨, , ⟩). Then the result of applying (1, … 𝑛) over 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) is the same as that of applying (1, … 𝑛)
to 𝚙𝚛𝐾 (⟨, , ⟩), from which the result follows.

• (𝐶𝐴𝐾
𝚖𝚜-𝚜𝚜𝚝 and 𝑆𝐴𝐾

𝚖𝚜-𝚜𝚜𝚝). The strategy of the proof is similar to that of the previous item, except that a different set  ′
1 of weak

constraints is used to simulate the semi-stable semantics. In particular, we show that, given a SWAF Υ = ⟨, , , (1, … , 𝑛)⟩,
it holds that 𝐸 ∈ 𝚖𝚜-𝚜𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚖𝚜-𝚌𝚘𝐾 (Υ′) where Υ′ = ⟨, , , ( ′

1, 1, 2, … , 𝑛)⟩ with  ′
1 = {𝚝 ⇒ 𝑥 ∨ ¬𝑥 ∣ 𝑥 ∈
23

}. Recall that, by Lemma 2, we have that 𝚜𝚜𝚝𝐾 (⟨, , ⟩) ⊆ 𝚌𝚘𝐾 (⟨, , ⟩). Then, since  ′
1 selects from 𝚌𝚘𝐾 (⟨, , ⟩)

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

the extensions that are maximal w.r.t. the presence of arguments whose status is either true or false (or equivalently that are
minimal w.r.t. undecided arguments) we have that 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) = 𝚜𝚜𝚝𝐾 (⟨, , ⟩). Therefore, applying (1, … 𝑛)
over 𝚖𝚜-𝚌𝚘𝐾 (⟨, , ,  ′

1⟩) is the same as applying (1, … 𝑛) to 𝚜𝚜𝚝𝐾 (⟨, , ⟩), from which the result follows.

• (𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛 and 𝐶𝐴𝐿

𝚖𝚜-𝚜𝚜𝚝). We first prove that deciding whether 𝐸 is a maximal-set preferred (resp., semi-stable) extension for Υ
under Lukasiewicz logic is in Π𝑝

2. A guess-and-check strategy to decide the complementary problem is as follows. Guess a set
𝑆 ⊆  and an index 𝑗 ∈ [1, 𝑛] and check that (i) 𝑆 is a preferred (resp., semi-stable) extension for ⟨, , ⟩ and (ii) for each
𝑖 ∈ [1, 𝑗] the sets  ′

𝑖
= {𝑤 ∈𝑖 | 𝐸 ⊧ 𝑤} and  ′′

𝑖
= {𝑤 ∈𝑖 | 𝑆 ⊧ 𝑤} are such that  ′

𝑘
= ′′

𝑘
with 𝑘 ∈ [1, 𝑗 − 1] and  ′

𝑗
⊂  ′′

𝑗

(that is,  ′
𝑗

is not maximal w.r.t the 𝑗-th stratum). The complexity of checking (i) is coNP for both preferred and semi-stable
semantics, since checking whether 𝐸 is a preferred (resp., semi-stable) extension for ⟨, ⟩ is coNP and checking whether 𝐸 ⊧ 

can be accomplished in polynomial time. Checking (ii) is in PTIME too. Therefore, the complement of the above-stated problem
is in Σ𝑝

2.

Thus, 𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛 (resp., 𝐶𝐴𝐿

𝚖𝚜-𝚜𝚜𝚝) is in Σ𝑝

3 since it suffices to guess a set 𝐸 ⊆  of arguments containing 𝑎 and check that 𝐸 is a
maximal-set preferred (resp. semi-stable) extension for Υ by using the above-described Π𝑝

2 oracle. Hence, it follows that 𝐶𝐴𝐿
𝚖𝚜-𝚙𝚛

(resp. 𝐶𝐴𝐿
𝚖𝚜-𝚜𝚜𝚝) is in Σ𝑝

3.

• Skeptical acceptance (𝑆𝐴𝜎
𝚖𝚜−𝚌𝚘, 𝑆𝐴𝜎

𝚖𝚜−𝚜𝚝, 𝑆𝐴𝜎
𝚖𝚜−𝚙𝚛, 𝑆𝐴𝜎

𝚖𝚜−𝚜𝚜𝚝). For each semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿} consider
the complementary problem of checking whether there exists a maximal-set 𝜎 -extension for Υ not containing 𝑎. Reasoning as
in the cases of the credulous acceptance considered earlier, it can be shown that this problem is in Σ𝑝

2 for (i)  ∈ {𝚌𝚘,𝚜𝚝} and
𝜎 ∈ {𝐾, 𝐿} and (ii)  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 , and in Σ𝑝

3 for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿. Therefore, 𝑆𝐴𝐿
𝚖𝚜− is in Π𝑝

2 for  ∈ {𝚌𝚘,𝚜𝚝}
and in Π𝑝

3 for  ∈ {𝚙𝚛,𝚜𝚜𝚝} while 𝑆𝐴𝐾
𝚖𝚜− is in Π𝑝

2 for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝}. □

The following lemma generalizes the result of Lemma 8 to the case of SWAF.

Lemma 9. Given a SWAF ⟨, , , (1, … , 𝑛)⟩, and 𝑛 natural numbers 𝑘1 ≤ |1|, … , 𝑘𝑛 ≤ |𝑛|, deciding whether there exists a
complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘𝑖 constraints of 𝑖, for each 𝑖 ∈ [1..𝑛] is in:

• 𝑁𝑃 (resp., 𝑁𝑃 , Σ𝑝

2, Σ𝑝

2) under Lukasiewicz logic, and

• 𝑁𝑃 (resp., 𝑁𝑃 , 𝑁𝑃 , Σ𝑝

2) under Kleene logic.

The result still holds if it is required that the extension 𝐸 contains a given argument 𝑎 ∈, that is for the problem of deciding whether there
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑖 constraints of 𝑖,
for each 𝑖 ∈ [1..𝑛].

Proof. The result can be proved by reasoning analogously to the proof of Lemma 8. □

Theorem 5. For any SWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-hard and in Δ𝑝

3 for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎
𝚖𝚌 is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) The lower bound results derive from the fact that they hold for any SWAFs ⟨, , , (1, … , 𝑛)⟩ where |𝑖| = 1
for each 𝑖 ∈ [1, 𝑛], that is, for LWAFs.

(Membership.) We now provide the membership results for each considered semantics and problem. Let Υ = ⟨, , , (1, … , 𝑛)⟩
be a SWAF and 𝑎 ∈ the argument for which we want to decide either credulous or skeptical acceptance w.r.t. Υ.

• (𝐶𝐴∗
𝚖𝚌- with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}). We consider the complete (resp., stable, preferred, semi-stable) semantics. We first call an

NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to check that ⟨, , ⟩ admits a complete (resp., stable, preferred, semi-stable) extension containing
𝑎. This corresponds to checking credulous acceptance for a CAF; note that this problem is in Σ𝑝

2 for preferred semantics under
Lukasiewicz logic, but it is in NP under Kleene logic— we will reconsider this at the end of this proof to provide a better upper
bound for 𝐶𝐴𝐾

𝚖𝚌-𝚙𝚛. Let 𝑚𝑖 = |𝑖| be the number of constraints in the 𝑖-th stratum, with 𝑖 ∈ [1..𝑛]. We perform 𝑛 consecutive
binary search in the intervals [0, 𝑚𝑖] to find the maximum number of constraints that are satisfied by complete (resp., stable,
preferred, semi-stable) extensions at each stratum, given the maximum number of constraints that are satisfied at previous strata,
as follows. In the first execution of the binary search in [0, 𝑚1], we use an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘 constraints of 1 (cf.
24

Lemma 9). Let 𝑘1
𝑚𝑎𝑥

be the maximum number of constraints in 1 that are satisfied by the extensions of ⟨, , ⟩. During the

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

𝑖-th execution of the binary search in [0, 𝑚𝑖], with 𝑖 ∈ [2..𝑛], we use an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there
exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ satisfying at least 𝑘𝑗

𝑚𝑎𝑥 constraints of 𝑗 , for
each 𝑗 ∈ [1..𝑖 − 1], and at least 𝑘 constraints of 𝑖 (cf. Lemma 9). Hence, at the end of the 𝑖-th binary search in [0, 𝑚𝑖], we find
the maximum number 𝑘𝑖

𝑚𝑎𝑥
of constraints in 𝑖, that are satisfied by any extension 𝐸, given that 𝑘𝑗

𝑚𝑎𝑥 is the maximum number
of constraints in 𝑗 that are satisfied by 𝐸, with 𝑗 ∈ [1..𝑖 − 1]. Finally, given the numbers 𝑘1

𝑚𝑎𝑥
, … , 𝑘𝑛

𝑚𝑎𝑥
, we use another call to

an NP (resp., NP, Σ𝑝

2, Σ𝑝

2) oracle to decide whether there exists a complete (resp., stable, preferred, semi-stable) extension 𝐸 for ⟨, , ⟩ containing 𝑎 and satisfying at least 𝑘𝑖
𝑚𝑎𝑥

constraints of 𝑖, for each 𝑖 ∈ [1..𝑛]; as stated in Lemma 9, checking this is
still in NP (resp., NP, Σ𝑝

2, Σ𝑝

2).

We now discuss the complexity of the above-described procedure. For the 𝑖-th execution of the binary search in [0, 𝑚𝑖], the number
of calls to the oracle is bounded by 𝑂(𝑙𝑜𝑔 𝑚𝑖), with 𝑖 ∈ [1..𝑛]. By observing that the overall number of calls to the oracle is bounded
by 𝑂(𝑛 𝑙𝑜𝑔 𝑚), where 𝑚 = max{𝑚𝑖 | 𝑖 ∈ [1..𝑛]}, we obtain that the complexity of 𝐶𝐴∗

𝚖𝚌-𝚌𝚘 (resp. 𝐶𝐴∗
𝚖𝚌-𝚜𝚝, 𝐶𝐴∗

𝚖𝚌-𝚙𝚛, 𝐶𝐴∗
𝚖𝚌-𝚜𝚜𝚝), is

in the class Δ𝑝

2 (resp., Δ𝑝

2, Δ𝑝

3, Δ𝑝

3). Furthermore, since for 𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛 it is sufficient to use NP oracles only (cf. Lemma 9), a better

upper bound can be found, that is, 𝐶𝐴𝐾
𝚖𝚌-𝚙𝚛 can be decided in Δ𝑝

2.

• (𝑆𝐴∗
𝚖𝚌- with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}). We consider the complete (resp. stable, preferred, semi-stable) semantics. Consider the com-

plementary problem of 𝑆𝐴∗
𝚖𝚌-𝚌𝚘 (resp. 𝑆𝐴∗

𝚖𝚌-𝚜𝚝, 𝑆𝐴∗
𝚖𝚌-𝚙𝚛, 𝑆𝐴∗

𝚖𝚌-𝚜𝚜𝚝), that is checking whether there exists a maximum-cardinality
complete (resp. stable, preferred, semi-stable) extension of ⟨, , , (1, … , 𝑛)⟩ not containing 𝑎. We can show that this prob-

lem is in Δ𝑝

2 (resp., Δ𝑝

2, Δ𝑝

3, Δ𝑝

3) by reasoning as in the proof of 𝐶𝐴∗
𝚖𝚌- , with  ∈ {𝚌𝚘, 𝚜𝚝, 𝚙𝚛, 𝚜𝚜𝚝}, in the previous item. The

only difference is that in the last call to the oracle we have to decide whether there exists a complete (resp., stable, preferred,
semi-stable) extension 𝐸 for ⟨, , ⟩ not containing 𝑎 and satisfying at least 𝑘𝑖

𝑚𝑎𝑥
constraints of 𝑖, for each 𝑖 ∈ [1..𝑛], where

each 𝑘𝑖
𝑚𝑎𝑥

is determined by a binary search as described above. Since the complexity of this problem is in NP (resp., NP, Σ𝑝

2 , Σ𝑝

2),
we obtain that complexity of the complementary problem of 𝑆𝐴∗

𝚖𝚌-𝚌𝚘 (resp. 𝑆𝐴∗
𝚖𝚌-𝚜𝚝, 𝑆𝐴∗

𝚖𝚌-𝚙𝚛, 𝑆𝐴∗
𝚖𝚌-𝚜𝚜𝚝), is in the class Δ𝑝

2 (resp.,
Δ𝑝

2, Δ𝑝

3, Δ𝑝

3). Finally, since Δ𝑝

𝑖
is closed under complement, the statement follows. □

A.4. WAF with linearly ordered weak constraints

We now provide the proof of Theorem 6, whose statement is recalled below.

Theorem 6. For any LWAF ⟨, , , (1, … , 𝑛)⟩, the problem:

• 𝐶𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 = 𝐾 ,

(ii) Σ𝑝

2-complete for semantics  = 𝚜𝚜𝚝 and 𝜎 = 𝐾 ,

(iii) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚙𝚛} and 𝜎 = 𝐿, and

(iv) Σ𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

• 𝑆𝐴𝜎


is: (i) Δ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(ii) Π𝑝

2-complete for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐾 ,

(iii) Π𝑝

2-hard and in Δ𝑝

3 for any semantics  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 = 𝐿.

Proof. (Membership.) Recall that for LWAF the maximal-set and maximum-cardinality semantics coincide, that is, 𝐶𝐴𝜎
𝚖𝚜 = 𝐶𝐴𝜎

𝚖𝚌
and 𝑆𝐴𝜎

𝚖𝚜 = 𝑆𝐴𝜎
𝚖𝚌 . Therefore, the membership results for 𝐶𝐴𝐾

𝚜𝚜𝚝, 𝑆𝐴𝐾
𝚜𝚜𝚝, and 𝑆𝐴𝐾

𝚙𝚛 follows from the fact that a LWAF is SWAF under
maximal-set semantics, and thus these results follow from Theorem 4. Moreover, all the other results follow from Theorem 5, since
a LWAF is SWAF under maximum-cardinality semantics.

(Hardness.) We now prove the hardness results.

- (𝐶𝐴∗
𝚜𝚝 and 𝑆𝐴∗

𝚜𝚝). The hardness result derives from analogous results for logic programs with weighted weak constraints with
priorities, for which credulous and skeptical reasoning is Δ𝑝

2-complete [37]. Thus, since every logic program 𝐿𝑃 under total stable
model semantics can be translated into an AF Λ, where the set of stable models of 𝐿𝑃 (restricted to positive literals) coincide
with the set of stable extensions of Λ [40], a logic program with weighted weak constraints with priorities (𝐿𝑃 , {𝑤1}, ..., {𝑤𝑘}),
can be translated into a LWAF Ω where weak constraints are linearly ordered. The result presented in [37] holds even if the
weight of every weak constraint 𝑤𝑖 is 2𝑖−1, with 𝑖 ∈ [1, 𝑘], meaning that a linear order is imposed.

- (𝐶𝐴∗
𝚌𝚘 and 𝑆𝐴∗

𝚌𝚘). The hardness result follows from the Δ𝑝

2-complete problem 𝐶𝐴∗
𝚜𝚝 for LWAF. Given a LWAF ⟨, , , (1, … ,

𝑛)⟩, 𝐸 ∈ 𝚜𝚝∗(Υ) iff 𝐸 ∈ 𝚌𝚘∗(Υ′) where Υ′ = ⟨, , ′ =  ∪′′, (1, … , 𝑛)⟩ and ′′ = {𝚝⇒ 𝑎 ∨¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴∗
𝚜𝚝(Υ, 𝑔)

is true iff 𝐶𝐴∗
𝚌𝚘(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚌𝚘(Υ
′, 𝑔) is true.

- (𝐶𝐴𝐾
𝚙𝚛). The hardness result follows from the Δ𝑝

2-complete problem 𝐶𝐴𝐾
𝚜𝚝 for LWAF. Given a LWAF ⟨, , , (1, … , 𝑛)⟩,

𝐸 ∈ 𝚜𝚝𝐾 (Υ) iff 𝐸 ∈ 𝚙𝚛𝐾 (Υ′) where Υ′ = ⟨, , ′ =  ∪ ′′, (1, … , 𝑛)⟩ and ′′ = {𝚝⇒ 𝑎 ∨ ¬𝑎 ∣ 𝑎 ∈}. Thus, 𝐶𝐴𝐾
𝚜𝚝(Υ, 𝑔) is

true iff 𝐶𝐴∗
𝚙𝚛(Υ

′, 𝑔) is true and 𝑆𝐴∗
𝚜𝚝(Υ, 𝑔) is true iff 𝑆𝐴∗

𝚙𝚛(Υ
′, 𝑔) is true.

- (𝐶𝐴∗
𝚜𝚜𝚝, 𝐶𝐴𝐿

𝚙𝚛, 𝑆𝐴∗
𝚙𝚛, and 𝑆𝐴∗

𝚜𝚜𝚝). The hardness results follow from Theorem 1 since any CAF ⟨, , ⟩ is an LWAF
25

⟨, , , ∅⟩. □

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

A.5. WAF with denial constraints

We start providing the proofs of Lemma 3 and Lemma 4 whose statements are recalled below.

Lemma 3. For any NWAF Υ and semantics  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛}, it holds that 𝐾 (Υ) = 𝐿(Υ).

Proof. Let Υ = ⟨, , , ⟩, and assume that 𝑆 ∈ 𝚌𝚘(⟨, ⟩) is a complete extension of ⟨, ⟩. Let 𝜅 ∶ 𝓁1 ∧⋯ ∧ 𝓁𝑛 ⇒ 𝚏∈ ∪ be
a denial constraint. Then, 𝑆 ⊧ 𝜅 under Lukasiewicz (and Kleene) logic iff there exists at least one positive (resp. negative) argument
𝓁𝑖 s.t. 𝓁𝑖 ∈ 𝐷𝑒𝑓 (𝑆) (resp. 𝓁𝑖 ∈ 𝑆). Thus 𝑇 ⊧ 𝜅 under Lukasiewicz logic iff 𝑇 ⊧ 𝜅 under Kleene logic. □

Lemma 4. Let Υ = ⟨, , , ⟩ be a NWAF, 𝐸1, 𝐸2 ∈ 𝚌𝚘(⟨, ⟩) with 𝐸1 ⊆ 𝐸2, and  ′ ⊆  . Then, under both Kleene and Lukasiewicz
logic, 𝐸1 ⊧  ∪ ′ implies 𝐸2 ⊧  ∪ ′.

Proof. First, recall that 𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and that 𝐸1 = 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2) = 𝐸2. Considering Kleene’s
logic, every constraint 𝜅 ∈  ∪ can be rewritten in standard form as a disjunction of conjunction of literals, that is, in the form
𝜅 ∶ 𝚝⇒ (𝓁1

1 ∧⋯ ∧𝓁1
𝑛1
) ∨⋯ ∨(𝓁𝑘

1 ∧⋯ ∧𝓁𝑘
𝑛𝑘
). If 𝐸1 ⊧ 𝜅, it means that there must be 𝑖 ∈ [1, 𝑘] such that 𝐸1 ⊧ (𝓁𝑖

1 ∧⋯ ∧𝓁𝑖
𝑛𝑖
). Moreover, as

𝐸1 ⊆ 𝐸2 implies that 𝐷𝑒𝑓 (𝐸1) ⊆ 𝐷𝑒𝑓 (𝐸2) and 𝐴𝑐𝑐(𝐸1) ⊆ 𝐴𝑐𝑐(𝐸2), it holds that 𝐸2 ⊧ (𝓁𝑖
1 ∧⋯ ∧ 𝓁𝑖

𝑛𝑖
) as well. As for Lemma 3 Kleene’s

logic and Lukasiewicz’s logic coincide, the results hold also under Lukasiewicz’s logic. □

We now provide the proofs of Theorem 7 and Theorem 8, whose statements are recalled below.

Theorem 7. For any NCAF ⟨, , ⟩, the problem

• 𝐶𝐴𝜎


is: (𝑖) 𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Σ𝑝

2-complete for  = 𝚜𝚜𝚝 and 𝜎 ∈ {𝐾,𝐿}.

• 𝑆𝐴𝜎


is: (𝑖) co𝑁𝑃 -complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿},

(𝑖𝑖) Π𝑝

2-complete for  ∈ {𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾,𝐿}.

Proof. (Hardness.) The lower bound results for 𝐶𝐴∗


with  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and for 𝑆𝐴∗


with  ∈ {𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} derive from the
fact that they hold for any CAF ⟨, , ⟩ where  = ∅, that is, for AF. As regard the coNP-hardness for 𝑆𝐴∗

𝚌𝚘 , it suffices to observe
that, in the proof of Theorem 1, to show the coNP-hardness of 𝑆𝐴𝚌𝚘, a CAF where  consists only of denial constraints is used. That
is, the proof provided in proof of Theorem 1 still holds also for NCAFs.

(Membership.) All the membership results except that for 𝐶𝐴∗
𝚙𝚛 derive from the analogous ones of Theorem 1. Regarding 𝐶𝐴∗

𝚙𝚛, it
is in 𝑁𝑃 since after guessing a set 𝑆 ⊆  of arguments containing 𝑎, we only need to check that (𝑖) 𝑆 is a complete extension for ⟨, ⟩, i.e., 𝑆 is admissible and contains all the arguments it defends (in PTIME) and (𝑖𝑖) 𝑆 ⊧  (in PTIME). In fact, since  ∪

consists of denial constraints only, by Lemma 4, we do not have to check that 𝑆 is maximal, as it is sufficient to check that 𝑆 is a
complete extension satisfying . Indeed, by Lemma 4, if there is a complete extension containing 𝑎 and satisfying , then there is
also a preferred extension containing 𝑎 and satisfying . □

Theorem 8. For any NWAF ⟨, , , ⟩, the problem

• 𝐶𝐴𝜎
𝚖𝚜 is Σ𝑝

2-complete for any semantics  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜} and 𝜎 ∈ {𝐾, 𝐿}.

• 𝑆𝐴𝜎
𝚖𝚜 is Π𝑝

2-complete for  ∈ {𝚌𝚘,𝚜𝚝,𝚙𝚛,𝚜𝚜𝚝} and 𝜎 ∈ {𝐾, 𝐿}.

Proof. (Membership.) The membership results under Kleene logic follow from the general case of WAF (cf. Theorem 2) as any NWAF
is also a WAF. Moreover, since the Lukasiewicz and Kleene logics coincide for denial constraints (cf. Lemma 3), the results also hold
under Lukasiewicz logic.

(Hardness.)

• (𝑆𝐴∗
𝚖𝚜-𝚙𝚛, 𝐶𝐴∗

𝚖𝚜-𝚜𝚜𝚝 and 𝑆𝐴∗
𝚖𝚜-𝚜𝚜𝚝) The lower bound results derive from the fact that they hold for any NWAF ⟨, , , ⟩ where

 = = ∅, that is, for AF.

• (𝐶𝐴∗
𝚖𝚜-𝚌𝚘 and 𝑆𝐴∗

𝚖𝚜-𝚌𝚘). The lower bound for credulous acceptance under complete semantics can be proved by showing
that, let Λ = ⟨, ⟩, 𝚜𝚜𝚝(Λ) = 𝚖𝚜-𝚌𝚘(Υ = ⟨, , , ⟩) where  = ∅, and  = {𝑥 ∧ ¬𝑥 ⇒ 𝚏 ∣ 𝑥 ∈ }. First, recall that
𝚜𝚜𝚝(Λ) ⊆ 𝚌𝚘∗(⟨, , ⟩). Then, since  selects from the extensions in 𝚌𝚘∗(⟨, , ⟩) those that are maximal w.r.t. the pres-

ence of arguments whose status is either true or false (or equivalently that are minimal w.r.t. undecided arguments), we have
that 𝚖𝚜-𝚌𝚘∗(⟨, , , ⟩) = 𝚜𝚜𝚝(⟨, ⟩), from which the result follows.

• (𝐶𝐴∗
𝚖𝚜-𝚙𝚛). The lower bound for credulous acceptance under preferred semantics can be proved by showing that, let Λ = ⟨, ⟩,

𝚜𝚜𝚝(Λ) = 𝚖𝚜-𝚙𝚛(⟨, , , ⟩) where  = ∅, and  = {𝑥 ∧ ¬𝑥 ⇒ 𝚏 ∣ 𝑥 ∈}. Recall that 𝚜𝚜𝚝(Λ) ⊆ 𝚙𝚛∗(⟨, , ⟩). Again, since
 selects from the extensions in 𝚙𝚛∗(⟨, , ⟩) those that are maximal w.r.t. true or false arguments (or equivalently that are
26

minimal w.r.t. undecided arguments), we have that 𝚖𝚜-𝚙𝚛∗(⟨, , , ⟩) = 𝚜𝚜𝚝(⟨, ⟩), from which the result follows.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• (𝐶𝐴∗
𝚖𝚜-𝚜𝚝 and 𝑆𝐴∗

𝚖𝚜-𝚜𝚝). The hardness results derive from the fact that in reducing disjunctive programs to logic programs with
strong and weak constraints (see Appendix C), which in turn can be rewritten into a WAF, all constraints used are denials. Recall
that under stable semantics, a constraint 𝚝⇒ 𝑎 ∨ 𝑏 can be rewritten into the equivalent constraint ¬𝑎 ∧ ¬𝑏 ⇒ 𝚏. □

Appendix B. Normal and disjunctive logic programs

We briefly review (normal) logic programs and disjunctive logic programs, recalling how partial stable models can be computed
by reducing to total stable models, as well as the relationship between logic programs and abstract argumentation frameworks.

B.1. Normal logic programs

The semantics of a logic program is given by the set of its partial stable models (PSMs) (corresponding to complete extensions of
AFs [40]). We summarize the basic concepts which underly the notion of PSMs [88].

A (normal) logic program (LP) is a set of rules of the form 𝐴 ← 𝐵1 ∧⋯ ∧ 𝐵𝑛, with 𝑛 ≥ 0, where 𝐴 is an atom, called head, and
𝐵1 ∧⋯ ∧𝐵𝑛 is a conjunction of literals, called body. We consider programs without function symbols. Given a program 𝑃 , 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃)
denotes the set of all ground instances of the rules in 𝑃 . The Herbrand Base of a program 𝑃 , i.e., the set of all ground atoms which can
be constructed using predicate and constant symbols occurring in 𝑃 , is denoted by 𝐵𝑃 , whereas ¬𝐵𝑃 denotes the set {¬𝐴 ∣ 𝐴 ∈ 𝐵𝑃 }.
Analogously, for any set 𝑆 ⊆ 𝐵𝑃 ∪¬𝐵𝑃 , ¬𝑆 denotes the set {¬𝐴 ∣ 𝐴 ∈ 𝑆}, where ¬¬𝐴 = 𝐴. Given 𝐼 ⊆ 𝐵𝑃 ∪¬𝐵𝑃 , 𝑝𝑜𝑠(𝐼) (resp., 𝑛𝑒𝑔(𝐼))
stands for 𝐼 ∩𝐵𝑃 (resp., ¬𝐼 ∩𝐵𝑃). 𝐼 is consistent if 𝑝𝑜𝑠(𝐼) ∩ ¬𝑛𝑒𝑔(𝐼) = ∅, otherwise 𝐼 is inconsistent.

Given a program 𝑃 , 𝐼 ⊆ 𝐵𝑃 ∪ ¬𝐵𝑃 is an interpretation of 𝑃 if 𝐼 is consistent. Also, 𝐼 is total if 𝑝𝑜𝑠(𝐼) ∪ 𝑛𝑒𝑔(𝐼) = 𝐵𝑃 , partial

otherwise. A partial interpretation 𝑀 of a program 𝑃 is a partial model of 𝑃 if for each ¬𝐴 ∈ 𝑀 every rule in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃) having as
head 𝐴 contains at least one body literal 𝐵 such that ¬𝐵 ∈ 𝑀 . Given a program 𝑃 and a partial model 𝑀 , the positive instantiation
of 𝑃 w.r.t. 𝑀 , denoted by 𝑃 𝑀 , is obtained from 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃) by deleting: (𝑎) each rule containing a negative literal ¬𝐴 such that
𝐴 ∈ 𝑝𝑜𝑠(𝑀); (𝑏) each rule containing a literal 𝐵 such that neither 𝐵 nor ¬𝐵 is in 𝑀 ; (𝑐) all the negative literals in the remaining
rules. 𝑀 is a partial stable model of 𝑃 iff 𝑀 is the minimal model of 𝑃 𝑀 . Alternatively, 𝑃𝑀 could be built by replacing every negated
body literal in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃) by its truth value.

The set of partial stable models of a logic program 𝑃 , denoted by  (𝑃), define a meet semi-lattice. The well-founded model
(denoted by  (𝑃)) and the maximal-stable models (𝑃),6 are defined by considering ⊆-minimal and ⊆-maximal elements. The
set of (total) stable models (denoted by  (𝑃)) is obtained by considering the maximal-stable models which are total, whereas the
least-undefined models (denoted by (𝑃)) are obtained by considering the maximal-stable models with a ⊆-minimal set of undefined
atoms (i.e., atoms which are neither true or false). The max-deterministic model (denoted by (𝑃)) is the ⊆-maximal PSM contained
in every maximal-stable model [87]. To denote a specific semantics, we use the acronyms 𝚙𝚜, 𝚜𝚝, 𝚖𝚜, 𝚕𝚜, 𝚠𝚏 and 𝚖𝚍 for the semantics
partial stable, (total) stable, maximal stable, least-undefined stable, well-founded, and max-deterministic, respectively.

The semantics of a logic program is given by the set of its partial stable models or by one of the restricted sets above recalled.

B.2. Disjunctive logic programs

The partial stable model semantics has been extended to disjunctive logic programs (DLPs), that is, programs whose rules allow
disjunctive heads.

Positive disjunctive programs may have more than one minimal model. A set of literals 𝑀 is a partial stable model of 𝑃 iff 𝑀 is
a minimal model of 𝑃 𝑀 , the positive disjunctive program derived through the same steps defined earlier for normal programs.

Example 11. Consider the disjunctive program 𝑃 :

𝑎 ← ¬𝑏

𝑏 ← ¬𝑎

𝑐 ∨ 𝑑 ← 𝑎

𝑑 ← 𝑐

There are three partial stable models for 𝑃 : 𝑀1 = {¬𝑐}, 𝑀2 = {¬𝑎, 𝑏, ¬𝑐, ¬𝑑} and 𝑀3 = {𝑎, ¬𝑏, ¬𝑐, 𝑑}. 𝑀2 and 𝑀3 are maximal stable
models, as well as total stable and least undefined stable models. □

B.2.1. Computing partial stable models

A technique for computing partial stable models using Answer Set Programming (ASP) solvers (solvers computing total stable
models) has been proposed in [68]. For the sake of presentation, here we consider ground programs.

For each atom 𝑎 in 𝑃 we consider a dummy atom 𝑎∗ whose meaning is atom a is potentially true. The program 𝑃 ∗ is defined as
follows:

𝑃 ∗ = {𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐∗1 , .., 𝑐∗
𝑛
∣ 𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐1, .., 𝑐𝑛 ∈ 𝑃 } ∪

{𝑎∗ ← 𝑏∗1, .., 𝑏
∗
𝑚
,¬𝑐1, .., 𝑐𝑛 ∣ 𝑎 ← 𝑏1, .., 𝑏𝑚,¬𝑐1, .., 𝑐𝑛 ∈ 𝑃 } ∪

{𝑎∗ ← 𝑎 ∣ a occurs in 𝑃 }
27

6 Corresponding to Dung’s preferred extensions [47].

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

It has been shown that for each partial stable model 𝑀 of 𝑃 there is a total stable 𝑁 of 𝑃 ∗ and vice versa. 𝑀 is obtained
from 𝑁 as follows 𝑀 = {𝑎 | 𝑎∗ ∈ 𝑁 ∧ 𝑎 ∈ 𝑁} ∪ {¬𝑎 | ¬𝑎∗ ∈ 𝑁 ∧ ¬𝑎 ∈ 𝑁}. On the other side 𝑁 can be derived from 𝑀 as follows
𝑁 = {𝓁, 𝓁∗ | 𝓁 ∈ 𝑀} ∪ {𝓁∗, ¬𝓁 | 𝓁, ¬𝓁 ∉ 𝑀}.

Example 12. Consider the program 𝑃 of Example 11. The program 𝑃 ∗ is defined as follows:

𝑎 ← ¬𝑏∗

𝑏 ← ¬𝑎∗

𝑐 ∨ 𝑑 ← 𝑎

𝑑 ← 𝑐

𝑎∗ ← ¬𝑏

𝑏∗ ← ¬𝑎

𝑐∗ ∨ 𝑑∗ ← 𝑎∗

𝑑∗ ← 𝑐∗

𝑎∗ ← 𝑎

𝑏∗ ← 𝑏

𝑐∗ ← 𝑐

𝑑∗ ← 𝑑

𝑃 ∗ has three total stable models:

• 𝑁1 = {𝑎∗, ¬𝑎, 𝑏∗, ¬𝑏, ¬𝑐∗, ¬𝑐, 𝑑∗, ¬𝑑},

• 𝑁2 = {¬𝑎∗, ¬𝑎, 𝑏∗, 𝑏, ¬𝑐∗, ¬𝑐, ¬𝑑∗, ¬𝑑},

• 𝑁3 = {𝑎∗, 𝑎, ¬𝑏∗, ¬𝑏, ¬𝑐∗, ¬𝑐, 𝑑∗, 𝑑},

corresponding to PSMs 𝑀1, 𝑀2 and 𝑀3 of Example 11, respectively.

B.3. Logic programs and argumentation frameworks

It is well-knows that there is a tight relationship between AFs and LPs under partial stable model semantics. In particular, for each
AF Λ there is a normal logic program 𝑃Λ (derived from Λ) such that the set complete (resp., grounded, stable, preferred, semi-stable)
extensions of Λ is equivalent to the set of partial (resp., well-founded, total, maximal, least-undefined) stable models of 𝑃Λ [40]. It
has been shown also the reverse result for all semantics, except for the least-undefined stable model semantics.

Appendix C. Weak constrained logic programs

Logic programs with weak constraints have been proposed in [37] and implemented in the well-known DLV system [9]. Here, we
consider weak constraints with a syntax similar to that defined in the core of the paper for AFs and a maximal-set semantics.7

Definition 16. A (ground) logic program with weak constraints (WLP) is a triple ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 is a (ground) normal logic
program,  is a set of (ground, strong) constraints and  is a set of (ground) weak constraints.

The semantics of a weak constrained logic program is given by the partial (resp., maximal, total, least-undefined) stable models
that satisfy all strong constraints in  and a maximal set of weak constraints in  .

The set of maximal-set partial (resp., total, maximal, least-undefined) stable models of a WLP 𝑃 is denoted by 𝙼𝚂-(𝑃) (resp.,
𝙼𝚂- (𝑃), 𝙼𝚂-(𝑃), 𝙼𝚂-(𝑃)).
Example 13. Consider the weak constrained program 𝑃 derived from the WAF of Example 8 (example in the core of the paper):

• 𝐿𝑃 = {𝑎 ← ¬𝑏; 𝑏 ← ¬𝑎; 𝑐 ← ¬𝑑; 𝑑 ← ¬𝑐};

•  = ∅;

•  = {𝑤1 = 𝑐⇒𝚏, 𝑤2 = 𝑎 ∨ ¬𝑎⇒𝚞}.

It is easy to check that 𝑃 has 9 partial stable models: 𝑀0 = {}, 𝑀1 = {𝑎, ¬𝑏}, 𝑀2 = {¬𝑎, 𝑏}, 𝑀3 = {𝑐, ¬𝑑}, 𝑀4 = {¬𝑐, 𝑑}, 𝑀5 =
{𝑎, ¬𝑏, 𝑐, ¬𝑑}, 𝑀6 = {𝑎, ¬𝑏, ¬𝑐, 𝑑}, 𝑀7 = {¬𝑎, 𝑏, 𝑐, ¬𝑑} and 𝑀8 = {¬𝑎, 𝑏, ¬𝑐, 𝑑}. In particular, 𝑀0 is the well-founded model, whereas
𝐸5, 𝐸6, 𝐸7, 𝐸8 are total, maximal and least-undefined stable models of 𝑃 . These models correspond to the complete extensions of the
AF in Example 8.

Regarding the satisfaction of weak constraints, we have that 𝑀0 ⊧ {𝑤2}, 𝑀4 ⊧ {𝑤1, 𝑤2}, 𝑀6 ⊧ {𝑤1}, and 𝑀8 ⊧ {𝑤1}, whereas the
other partial stable models do not satisfy any constraint. Therefore, the maximal-set maximal (total, least-undefined) stable models are
𝑀6 and 𝑀8, whereas there is only one maximal-set partial stable model, which is 𝑀4 . These models correspond to the maximal-set
extensions of the WAF in Example 8. □

C.1. Mapping disjunctive programs to weak constrained logic programs

It has been shown that the introduction of disjunctive heads increases the expressivity of logic programs of one level in the
polynomial hierarchy [58,59]. Restricted cases of weak constraints under (total) stable model semantics have been studied in [66],
where it is shown that the expressivity of LPs grows of one level (𝐶𝐴𝚜𝚝 is Σ𝑝

2-complete and 𝑆𝐴𝚜𝚝 is Π𝑝

2-complete) and in [37], where
it is shown that the expressivity of DLP grows to Δ𝑝

2 (the paper assumes a maximum-cardinality based semantics). We now show that
(normal) WLPs, under maximal-set semantics, are no less expressive than DLPs. This is shown by mapping DLPs to WLPs.
28

7 Weak constraints implemented in DLV have a similar syntax, but a maximum-cardinality based semantics.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Definition 17. For any disjunctive program 𝑃 , 𝑇 (𝑃) = ⟨𝐿𝑃 , , ⟩ is the program with constraints (and without disjunctive rules)
derived as follows:

• 𝐿𝑃 is derived from 𝑃 by replacing every disjunctive rule 𝑎1 ∨ ⋯ ∨ 𝑎𝑛 ← 𝜑 with 2 × 𝑛 normal rules of the form: 𝑎𝑖 ←
𝜑, ¬𝑎𝑖 and 𝑎𝑖 ← 𝜑, ¬𝑎𝑖

•  = {𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛 ∣ 𝑎1 ∨⋯ ∨ 𝑎𝑛 ← 𝜑 ∈ 𝑃 , 𝑛 > 1}8;

•  = {𝑎⇒𝚏 | 𝑎 occurs in 𝑔𝑟𝑜𝑢𝑛𝑑(𝑃)}.

Given a disjunctive logic program 𝑃 and an interpretation 𝐼 of 𝑇 (𝑃), then 𝐼[𝑃] denotes the subset of 𝐼 whose atoms occur
in 𝑃 .

Theorem 10. For any disjunctive logic program 𝑃 , it is the case that  (𝑃) = {𝑀[𝑃] | 𝑀 ∈ 𝙼𝚂- (𝑇 (𝑃))}.

Proof. Let 𝑇 (𝑃) = ⟨𝐿𝑃 , , ⟩, we first prove that for every total stable model 𝑀 of 𝑃 there is 𝑀 ′ such that 𝑀 ∪𝑀 ′ is a total stable
model of 𝐿𝑃 and that such model is a best model of 𝑇 (𝑃). Given 𝑀 , for each overlined atom 𝑎̄ occurring in 𝑇 (𝑃), 𝑀 ′ contains
either 𝑎̄ or ¬𝑎̄. More specifically, for every 𝑎̄ occurring in 𝑇 (𝑃), if there are in 𝑇 (𝑃) two rules 𝑎 ← 𝜑, ¬𝑎̄ and 𝑎̄ ← 𝜑, ¬𝑎 such that
𝑀 ⊧ 𝜑, then ¬𝑎 ∈ 𝑀 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑎̄ ∈ 𝑀 ′, otherwise ¬𝑎̄ ∈ 𝑀 ′. Clearly, if 𝑀 is a minimal model of 𝑃 𝑀 , 𝑀 ∪𝑀 ′ is the minimal model of
𝐿𝑃 𝑀∪𝑀 ′

. Indeed, for each rule having an atom 𝑎 ∈ 𝑀 occurring in the head of a rule 𝑟 of 𝑃 such that 𝑀 ⊧ 𝑏𝑜𝑑𝑦(𝑟), there is a rule
𝑟′ in 𝑇 (𝑃) (derived from 𝑟) such that 𝑀 ∪𝑀 ′ ⊧ 𝑏𝑜𝑑𝑦(𝑟′). Moreover, 𝑀 ∪𝑀 ′ ⊧  as 𝑀 is a model of 𝑃 and is a best model since 𝑀
is a minimal model that satisfies a maximal set of constraints in  .

We now show that for each 𝑀 ∈ 𝙼𝚂- (𝑇 (𝑃)), 𝑀[𝑃] is a stable model of 𝑃 . The set  (𝐿𝑃) could contain stable models which
do not satisfy rules of 𝑃 with disjunctive heads. However, as for each disjunctive rule 𝑎1 ∨⋯ ∨ 𝑎𝑛 ← 𝜑 we have a strong constraint
𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛, these models are not feasible. The maximization of weak constraints guarantees that our best models are minimal
model of 𝑃 . □

Observe that for normal logic programs 𝑃 , the corresponding WLP is 𝑇 (𝑃) = ⟨𝐿𝑃 , , ⟩, where we have that 𝐿𝑃 = 𝑃 and  = ∅.
Notably, the set of weak constraints  is useless as minimality is implicit in the total stable model semantics.

Example 14. Consider the program of Example 11. The corresponding WLP is ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 consists of the following
rules:

𝑎 ← ¬𝑏

𝑏 ← ¬𝑎

𝑐 ← 𝑎,¬𝑐

𝑐 ← 𝑎,¬𝑐

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑐

whereas  = {𝜍 = 𝑎 ⇒ 𝑐 ∨ 𝑑} and  = {𝑤1 = 𝑎⇒𝚏; 𝑤2 = 𝑏⇒𝚏; 𝑤3 = 𝑐⇒𝚏; 𝑤4 = 𝑑⇒𝚏}.

The total stable models of 𝐿𝑃 are:

• 𝑇1 = {¬𝑎, 𝑏, ¬𝑐, ¬𝑑, ¬𝑐, ¬𝑑},

• 𝑇2 = {𝑎, ¬𝑏, ¬𝑐, ¬𝑑, 𝑐, 𝑑},

• 𝑇3 = {𝑎, ¬𝑏, ¬𝑐, 𝑑, 𝑐, ¬𝑑},

• 𝑇4 = {𝑎, ¬𝑏, 𝑐, 𝑑, ¬𝑐, ¬𝑑}.

As 𝑇2 ̸⊧ 𝜍, the feasible models are 𝑇1, 𝑇3, 𝑇4. Considering the satisfaction of weak constraints, we have that:

• 𝑇1 ⊧ {𝑤1, 𝑤3, 𝑤4},

• 𝑇3 ⊧ {𝑤2, 𝑤3},

• 𝑁8 ⊧ {𝑤2}.

Therefore, the best models are 𝑇1 and 𝑇3. Comparing the best models of 𝑇 (𝑃) with the stable model of 𝑃 (see Example 11) we
have 𝑇1[𝑃] = 𝑀2 and 𝑇3[𝑃] = 𝑀3. □

The next final example shows how a disjunctive logic program 𝑃 is first translated into a normal logic programs 𝑃 ∗ so that
(𝑃) ≡  (𝑃 ∗) (using the approach in B.2.1), and then how 𝑃 ∗ is mapped into a logic program with weak constraints.
29

8 Under stable semantics or Kleene logic, 𝜅 ∶ 𝜑 ⇒ 𝑎1 ∨⋯ ∨ 𝑎𝑛 can be equivalently rewritten as a denial constraint 𝜅′ ∶ 𝜑 ∧ ¬𝑎1 ∧⋯ ∧ ¬𝑎𝑛 ⇒ 𝚏.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

Example 15. Consider again the program 𝑃 of Example 11, and the corresponding program 𝑃 ∗ of Example 12. The corresponding
WLP in this case is 𝑇 (𝑃 ∗) = ⟨𝐿𝑃 , , ⟩, where 𝐿𝑃 is the set of rules:

𝑎 ← ¬𝑏∗

𝑏 ← ¬𝑎∗

𝑐 ← 𝑎,¬𝑐

𝑐 ← 𝑎,¬𝑐

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑎,¬𝑑

𝑑 ← 𝑐

𝑎∗ ← ¬𝑏

𝑏∗ ← ¬𝑎

𝑐∗ ← 𝑎∗,¬𝑐∗

𝑐∗ ← 𝑎∗,¬𝑐∗

𝑑∗ ← 𝑎∗,¬𝑑∗

𝑑∗ ← 𝑎∗,¬𝑑∗

𝑑∗ ← 𝑐∗

𝑎∗ ← 𝑎

𝑏∗ ← 𝑏

𝑐∗ ← 𝑐

𝑑∗ ← 𝑑

Moreover,  = {𝜍 = 𝑎 ⇒ 𝑐 ∨ 𝑑; 𝜍∗ = 𝑎∗ ⇒ 𝑐∗ ∨ 𝑑∗} and  = {𝑤1 = 𝑎⇒𝚏; 𝑤2 = 𝑏⇒𝚏; 𝑤3 = 𝑐⇒𝚏; 𝑤4 = 𝑑⇒𝚏; 𝑤∗
1 = 𝑎∗⇒𝚏; 𝑤∗

2 =
𝑏∗⇒𝚏; 𝑤∗

3 = 𝑐∗⇒𝚏; 𝑤∗
4 = 𝑑∗⇒𝚏}.

The total stable models of 𝐿𝑃 are:

∙ 𝑁0 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, ¬𝑐, ¬𝑑, 𝑐∗, 𝑑∗},

∙ 𝑁1 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, 𝑑∗, ¬𝑐, ¬𝑑, 𝑐∗, ¬𝑑∗},

∙ 𝑁2 = {¬𝑎, 𝑎∗, ¬𝑏, 𝑏∗, ¬𝑐, 𝑐∗, ¬𝑑, 𝑑∗, ¬𝑐, ¬𝑑, ¬𝑐∗, ¬𝑑∗},

∙ 𝑁3 = {¬𝑎, ¬𝑎∗, 𝑏, 𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, ¬𝑑, ¬𝑐, ¬𝑐∗, ¬𝑑∗},

∙ 𝑁4 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗, 𝑐, 𝑑, 𝑐∗, 𝑑∗},

∙ 𝑁5 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, ¬𝑑, 𝑑∗, 𝑐, 𝑐∗, 𝑑, ¬𝑑∗},

∙ 𝑁6 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, ¬𝑐∗, 𝑑, 𝑑∗, 𝑐, 𝑐∗, ¬𝑑, ¬𝑑∗},

∙ 𝑁7 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, 𝑐∗, ¬𝑑, 𝑑∗, 𝑐, ¬𝑐∗, 𝑑, ¬𝑑∗},

∙ 𝑁8 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, ¬𝑐, 𝑐∗, 𝑑, 𝑑∗, 𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗},

∙ 𝑁9 = {𝑎, 𝑎∗, ¬𝑏, ¬𝑏∗, 𝑐, 𝑐∗, 𝑑, 𝑑∗, ¬𝑐, ¬𝑐∗, ¬𝑑, ¬𝑑∗}.

Moreover, as 𝑁0 ̸⊧ 𝜍∗ and 𝑁4, 𝑁5, 𝑁7 ̸⊧ 𝜍, the feasible models are 𝑁1, 𝑁2, 𝑁3, 𝑁6, 𝑁8, 𝑁9. Considering the satisfaction of weak
constraints, we have that:

∙ 𝑁1 ⊧ {𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤∗
3},

∙ 𝑁2 ⊧ {𝑤1, 𝑤2, 𝑤3, 𝑤4},

∙ 𝑁3 ⊧ {𝑤1, 𝑤3, 𝑤4, 𝑤∗
1 , 𝑤

∗
3 , 𝑤

∗
4},

∙ 𝑁6 ⊧ {𝑤2, 𝑤3, 𝑤∗
2 , 𝑤

∗
3},

∙ 𝑁8 ⊧ {𝑤2, 𝑤3, 𝑤∗
2},

∙ 𝑁9 ⊧ {𝑤2, 𝑤∗
2}.

Therefore, the best models are 𝑁1 , 𝑁3 and 𝑁6. Comparing the best models of 𝑇 (𝑃 ∗) with the stable model of 𝑃 (see Example 11)
we have 𝑁1[𝑃] = 𝑀1, 𝑁3[𝑃] = 𝑀2 and 𝑁6[𝑃] = 𝑀3. □

Appendix D. Abstract argumentation framework with epistemic constraints

We now review the Epistemic Argumentation Framework [89], which extends Dungs’ framework with epistemic constraints, and
then show a relationship with the framework proposed in this paper.

D.1. Labelling

Argumentation semantics can be also defined in terms of labelling [21]. A labelling for an AF ⟨, ⟩ is a total function 𝐿𝑎𝑏 ∶ →
{𝐢𝐧, 𝐨𝐮𝐭, 𝐮𝐧𝐝𝐞𝐜} assigning to each argument a label: 𝐿𝑎𝑏(𝑎) = 𝐢𝐧 means that 𝑎 is accepted, 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 means that 𝑎 is rejected, and
𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜 means that 𝑎 is undecided.

Let 𝐢𝐧(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐢𝐧}, 𝐨𝐮𝐭(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭}, and 𝐮𝐧𝐝𝐞𝐜(𝐿𝑎𝑏) = {𝑎 ∣ 𝑎 ∈ ∧ 𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜},
a labelling 𝐿𝑎𝑏 can be represented by means of a triple ⟨𝐢𝐧(𝐿𝑎𝑏), 𝐨𝐮𝐭(𝐿𝑎𝑏), 𝐮𝐧𝐝𝐞𝐜(𝐿𝑎𝑏)⟩.

Given an AF Λ = ⟨, ⟩, a labelling 𝐿𝑎𝑏 for  is said to be conflict-free if there are no two arguments 𝑎, 𝑏 ∈ 𝐢𝐧(𝐿𝑎𝑏) such that
(𝑎, 𝑏) ∈, and admissible (or legal) if ∀𝑎 ∈ 𝐢𝐧(𝐿𝑎𝑏) ∪ 𝐨𝐮𝐭(𝐿𝑎𝑏) it holds that:

(i) 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 iff ∃ (𝑏, 𝑎) ∈ such that 𝐿𝑎𝑏(𝑏) = 𝐢𝐧; and

(ii) 𝐿𝑎𝑏(𝑎) = 𝐢𝐧 iff ∀(𝑏, 𝑎) ∈, 𝐿𝑎𝑏(𝑏) = 𝐨𝐮𝐭 holds.

Moreover, 𝐿𝑎𝑏 is a complete labelling iff conditions (i) and (ii) hold for all arguments 𝑎 ∈.

Between complete extensions and complete labellings there is a bijective mapping defined as follows: for each extension 𝐸 there
is a unique labelling 𝐿𝑎𝑏(𝐸) = ⟨𝐸, 𝐷𝑒𝑓 (𝐸),  ⧵ (𝐸 ∪𝐷𝑒𝑓 (𝐸))⟩ and for each labelling 𝐿𝑎𝑏 there is a unique extension, that is 𝐢𝐧(𝐿𝑎𝑏).
We say that 𝐿𝑎𝑏(𝐸) is the labelling corresponding to 𝐸. Moreover, we say that 𝐿𝑎𝑏(𝐸) is an  -labelling for a given AF Λ and semantics
 ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜, 𝚐𝚛} iff 𝐸 is an  -extension of Λ.

We say that the status of an argument 𝑎 w.r.t. a labelling 𝐿𝑎𝑏 (or its corresponding extension 𝐢𝐧(𝐿𝑎𝑏)) is 𝐢𝐧 (resp. 𝐨𝐮𝐭 , 𝐮𝐧𝐝𝐞𝐜) iff
𝐿𝑎𝑏(𝑎) = 𝐢𝐧 (resp. 𝐿𝑎𝑏(𝑎) = 𝐨𝐮𝐭 , 𝐿𝑎𝑏(𝑎) = 𝐮𝐧𝐝𝐞𝐜). We will avoid to mention explicitly the labelling (or the extension) whenever it is
30

understood.

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

D.2. AF with epistemic constraints

Given an AF Λ = ⟨, ⟩, an epistemic atom over Λ is of the form K𝜑 or M𝜑, where 𝜑 is a propositional formula built from
𝜆𝐴 = {𝐢𝐧(𝑎), 𝐨𝐮𝐭(𝑎), 𝐮𝐧𝐝𝐞𝐜(𝑎) ∣ 𝑎 ∈} by using the connectives ¬, ∨, and ∧. An epistemic literal is an epistemic atom or its negation.
An epistemic formula (over 𝜆𝐴) is a propositional formula constructed over epistemic literals and connectives ∧ and ∨. Intuitively, K𝜑

(resp. M𝜑) means that the considered agent believes that 𝜑 is always true (resp. 𝜑 is possibly true).

A labelling 𝐿𝑎𝑏 satisfies a formula 𝜑 (denoted as 𝐿𝑎𝑏 ⊧ 𝜑) if the formula obtained from 𝜑 by replacing every atom occurring in
𝐿𝑎𝑏 with 𝚝 (𝚝𝚛𝚞𝚎), and every atom not occurring in 𝐿𝑎𝑏 with 𝚏 (𝚏𝚊𝚕𝚜𝚎), evaluates to true.

A set 𝑆𝐿 of labellings satisfies an epistemic formula 𝜑, denoted as 𝑆𝐿 ⊧ 𝜑, if one of the following conditions holds:

∙ 𝜑 = 𝚝,

∙ 𝜑 =𝐊𝜓 and 𝐿𝑎𝑏 ⊧ 𝜓 for every 𝐿𝑎𝑏 ∈ 𝑆𝐿,

∙ 𝜑 =𝐌𝜓 and 𝐿𝑎𝑏 ⊧ 𝜓 for some 𝐿𝑎𝑏 ∈ 𝑆𝐿,

∙ 𝜑 = ¬𝜓 and 𝑆𝐿 ̸⊧ 𝜓 ,

∙ 𝜑 = 𝜑1 ∧𝜑2 and (𝑆𝐿 ⊧ 𝜑1 and 𝑆𝐿 ⊧ 𝜑2),

∙ 𝜑 = 𝜑1 ∨𝜑2 and (𝑆𝐿 ⊧ 𝜑1 or 𝑆𝐿 ⊧ 𝜑2).

An epistemic formula 𝜑 is consistent if there exists a (non-empty) set 𝑆𝐿 of labellings such that 𝑆𝐿 ⊧ 𝜑; otherwise, 𝜑 is inconsis-

tent. The following basic properties hold:

∙ 𝑆𝐿 ⊧ ¬𝐌𝜑 iff 𝑆𝐿 ⊧ 𝐊¬𝜑,

∙ 𝑆𝐿 ⊧ ¬𝐊𝜑 iff 𝑆𝐿 ⊧ 𝐌¬𝜑,

∙ 𝑆𝐿 ⊧ 𝐌(𝜑1 ∨𝜑2) iff 𝑆𝐿 ⊧ 𝐌𝜑1 ∨ 𝑆𝐿 ⊧ 𝐌𝜑2,

∙ 𝑆𝐿 ⊧ 𝐊(𝜑1 ∧𝜑2) iff 𝑆𝐿 ⊧ 𝐊𝜑1 ∧ 𝑆𝐿 ⊧ 𝐊𝜑2.

Definition 18 (EAF Syntax). An Epistemic AF (EAF) is a triple ⟨, , 𝜑⟩ where ⟨, ⟩ is an AF and 𝜑 is an epistemic formula to be
satisfied, also called epistemic constraint.

The semantics of EAF relies on the concept of  -epistemic labelling, that is a maximal set of labellings of the underlying AF
satisfying the epistemic constraint.

Definition 19 (EAF Semantics). Let  = ⟨, , 𝜑⟩ be an EAF and  ∈ {𝚐𝚛, 𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝} a semantics. A set 𝑆𝐿 of labellings is an
 -epistemic labelling set of  if (i) each 𝐿𝑎𝑏 ∈ 𝑆𝐿 is an  -labelling of ⟨, ⟩, and (ii) 𝑆𝐿 is a ⊆-maximal set of  -labellings of ⟨, ⟩
that satisfies 𝜑.

An EAF may have multiple  -epistemic labelling sets. In fact, an  -epistemic labelling set is a collection of  -labellings that
represent the belief of an agent. In particular, EAF  = ⟨, , K𝚝⟩ has a unique  -epistemic labelling set that coincides with the set
of  -labellings of the underlying AF. By definition, an EAF always has a (possibly empty)  -epistemic labelling set.

D.3. AF with labelled constraints

An EAF is called Labelled CAF (LabCAF) if it is of the form ⟨, , K 𝜑⟩, where 𝜑 is a propositional formula built from Λ and
using the operators ∧, ∨ and ¬. Any LabCAF ⟨, , K𝜑⟩ has a unique labelling set which consists of the set of  -extensions for ⟨, ⟩
satisfying 𝜑.

Theorem 11. Let  = ⟨, , K𝜑⟩ be an LabCAF,  ∈ {𝚌𝚘, 𝚙𝚛, 𝚜𝚝, 𝚜𝚜𝚝, 𝚐𝚛} a semantics and 𝑆𝐿 the unique set of  -labellings for  . Then,
there exist a CAF Ω = ⟨, , ⟩ such that  can be derived from 𝜑 in linear time and 𝑆𝐿 = (Ω).

Proof. Let  = ⟨, , K𝜑⟩ be an LabCAF, and Ω = ⟨, , ⟩ where  = 𝜑′ is obtained as follows. Any atom 𝐢𝐧(𝑥) ∈ 𝜑 is replaced
with (𝚝⇒ 𝑥), 𝐨𝐮𝐭(𝑥) ∈ 𝜑 is replaced with (𝑥 ⇒ 𝚏), and any atom 𝐮𝐧𝐝𝐞𝐜(𝑥) ∈ 𝜑 is replaced with (𝚞⇒ 𝑥 ∧ ¬𝑥). Observe that  = 𝜑′ is
built in linear time w.r.t. 𝜑.

We now prove that 𝐸 ∈ 𝑆𝐿 iff 𝐸 ∈ (Ω). For any atom 𝐢𝐧(𝑥) ∈ 𝜑, we have that 𝐢𝐧(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ 𝐸, implying that 𝚝⇒ 𝑥

is true iff 𝑥 ∈ 𝐸. Analogously, for any atom 𝐨𝐮𝐭(𝑥) ∈ 𝜑, we have that 𝐨𝐮𝐭(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ 𝐷𝑒𝑓 (𝐸), implying that 𝑥 ⇒ 𝚏 is true
iff 𝑥 ∈ 𝐷𝑒𝑓 (𝐸). Assume now that we have an atom 𝐮𝐧𝐝𝐞𝐜(𝑥) ∈ 𝜑. We have that 𝐮𝐧𝐝𝐞𝐜(𝑥) is true w.r.t. 𝐸 iff 𝑥 ∈ ⧵ (𝐸 ∪ 𝐷𝑒𝑓 (𝐸)).
This implies that 𝚞⇒ 𝑥 ∧ ¬𝑥 is true iff 𝑥 ∈ ⧵ (𝐸 ∪𝐷𝑒𝑓 (𝐸)) or the consequent (𝑥 ∧ ¬𝑥) is true. As the latter is a contradiction, we
have that 𝐮𝐧𝐝𝐞𝐜(𝑥) is true w.r.t. 𝐸 implies that 𝚞⇒ 𝑥 ∧ ¬𝑥 is true w.r.t. 𝐸. As the inverse direction holds by reasoning analogously,
we showed that 𝐸 ∈ 𝑆𝐿 iff 𝐸 ∈ (Ω). □

Therefore, CAF is at least expressive as LabCAF.

Appendix E. Background on ADF

In this appendix, we review the syntax and the semantics of the ADF framework. An Abstract Dialectical Framework (ADF) [36] is
31

a triple 𝐷 = ⟨𝑆, 𝐿, 𝐶⟩ where:

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

• 𝑆 is a set of statements (also called arguments or nodes);
• 𝐿 ⊆ 𝑆 ×𝑆 is a set of links;
• 𝐶 = {𝐶𝑠}𝑠∈𝑆 is a set of total functions 𝐶𝑠 ∶ 2𝑝𝑎𝑟(𝑠) → {𝚝, 𝚏}, one for each statement, where 𝑝𝑎𝑟(𝑠) = {𝑥 | 𝑥 ∈ 𝑆 ∧ (𝑥, 𝑠) ∈ 𝐿}. 𝐶𝑠 is

called acceptance condition of 𝑠.

Here, links in 𝐿 represent dependencies: the status of a node 𝑠 depends only on the status of its parents, 𝑝𝑎𝑟(𝑠), the nodes with a
direct link to 𝑠. Each node 𝑠 is associated with an acceptance condition 𝐶𝑠 that specifies the conditions under which 𝑠 is acceptable.
Acceptance conditions are represented by a collection {𝐶𝑠}𝑠∈𝑆 of propositional formulae, using atoms from 𝑝𝑎𝑟(𝑠) and the logical
connectives ∧, ∨, ¬. Observe that we could assume that 𝐿 is understood and simply denote an ADF by a pair ⟨𝑆, 𝐶⟩ (instead of a
triple).

Semantics assign to ADFs a collection of (3-valued) interpretations mapping each statement to truth values {𝚝, 𝚏, 𝚞}, denoting
true, false, and undefined, respectively. Truth values are partially ordered by ≤𝑖 according to their information content: 𝚞 <𝑖 𝚝 and
𝚞 <𝑖 𝚏 and no other pair is in ≤𝑖. The information ordering ≤𝑖 extends in a straightforward way to interpretations 𝜈1, 𝜈2 over 𝑆 in
that 𝜈1 ≤𝑖 𝜈2 iff 𝜈1(𝑠) ≤𝑖 𝜈2(𝑠) for all 𝑠 ∈ 𝑆 . An interpretation 𝜈 is 2-valued if all statements are mapped to 𝚝 or 𝚏. For interpretations
𝜈 and 𝜔, we say that 𝜔 extends 𝜈 iff 𝜈 ≤𝑖 𝜔. We denote by [𝜈]2 the set of all completions of 𝜈, that is, 2-valued interpretations that
extend 𝜈. For an ADF 𝐷 = ⟨𝑆, 𝐶⟩, 𝑠 ∈ 𝑆 , and an interpretation 𝜈, the characteristic function is Γ𝐷(𝜈) = 𝜈′, where

𝜈′(𝑠) =
⎧⎪⎨⎪⎩
𝚝 if 𝜔(𝐶𝑠) = 𝚝 for all 𝜔 ∈ [𝜈]2
𝚏 if 𝜔(𝐶𝑠) = 𝚏 for all 𝜔 ∈ [𝜈]2
𝚞 otherwise

That is, operator Γ𝐷 returns an interpretation mapping a statement 𝑠 to 𝚝 (resp., 𝚏) iff all 2-valued interpretations extending 𝜈
evaluate 𝐶𝑠 to 𝚝 (resp., 𝚏). Intuitively, Γ𝐷 checks if truth values can be justified based on the information in 𝜈 and the acceptance
conditions. Note that Γ𝐷 is defined on 3-valued interpretations, while acceptance conditions are evaluated under their 2-valued
completions. Given an ADF 𝐷 = ⟨𝑆, 𝐶⟩, an interpretation 𝜈 is (w.r.t. 𝐷):

• admissible, if 𝜈 ≤𝑖 Γ𝐷(𝜈);
• complete, if 𝜈 = Γ𝐷(𝜈);
• preferred, if 𝜈 is ⊆-maximal admissible w.r.t. ≤𝑖;

• grounded, if 𝜈 is complete and there is no other complete interpretation 𝜈′ such that 𝜈′ ≤𝑖 𝜈.

A 2-valued interpretation 𝜈 is a model of 𝐷 if 𝜈(𝑠) = 𝜈(𝐶𝑠) for every 𝑠 ∈ 𝑆 . The definition of the stable semantics for ADFs is inspired by
the stable semantics for logic programs: its purpose is to disallow cyclic supports within a model. In particular, (𝑖) to be a stable model
of 𝐷, 𝜈 needs to be a model of 𝐷, and (𝑖𝑖) 𝑆𝜈 = {𝑠 ∈ 𝑆 | 𝜈(𝑠) = 𝚝} must equal the statements set to true in the grounded interpretation
of the reduced ADF 𝐷𝜈 = ⟨𝑆𝜈, {𝐶𝜈

𝑠
}𝑠∈𝑆𝜈 ⟩, where for 𝑠 ∈ 𝑆𝜈 we set 𝐶𝜈

𝑠
= 𝐶𝑠[𝑏∕𝚏 | 𝜈(𝑏) = 𝚏]. If 𝜈⇂𝑆𝜈 is the interpretation 𝜈 projected

on 𝑆𝜈 , that is, 𝜈⇂𝑆𝜈 (𝑠) = 𝜈(𝑠) for 𝑠 ∈ 𝑆𝜈 and undefined otherwise, then the latter amounts to the fact that 𝜈⇂𝑆𝜈 be the grounded
interpretation of 𝐷𝜈 .

As shown in [36], these semantics generalize the corresponding ones defined for AF.

Example 16. [33] For the ADF 𝐷 = ⟨{𝑎, 𝑏, 𝑐}, {𝐶𝑎 = 𝑏 ∨ ¬𝑏, 𝐶𝑏 = 𝑏, 𝐶𝑐 = ¬𝑐 ∨ 𝑏}⟩,9 the complete interpretations are 𝑀0 = {𝑎} (𝑏 and 𝑐
are undefined), 𝑀1 = {𝑎, ¬𝑏} (𝑐 is undefined) and 𝑀2 = {𝑎, 𝑏, 𝑐}. 𝑀0 is the grounded interpretation, while 𝑀1 and 𝑀2 are preferred.
Only 𝑀2 is a model. There is no stable model. □

References

[1] G. Alfano, A. Cohen, S. Gottifredi, S. Greco, F. Parisi, G.R. Simari, Credulous acceptance in high-order argumentation frameworks with necessities: an incremental
approach, Artif. Intell. 333 (2024) 104159.

[2] G. Alfano, S. Greco, F. Parisi, Efficient computation of extensions for dynamic abstract argumentation frameworks: an incremental approach, in: Proc. of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, (IJCAI), 2017, pp. 49–55.

[3] G. Alfano, S. Greco, F. Parisi, G.I. Simari, G.R. Simari, Incremental computation for structured argumentation over dynamic DeLP knowledge bases, Artif. Intell.
300 (2021) 103553.

[4] G. Alfano, S. Greco, F. Parisi, I. Trubitsyna, On the semantics of abstract argumentation frameworks: a logic programming approach, Theory Pract. Log. Program.
20 (2020) 703–718.

[5] G. Alfano, S. Greco, F. Parisi, I. Trubitsyna, Argumentation frameworks with strong and weak constraints: semantics and complexity, in: Proc. of the 35th AAAI
Conference on Artificial Intelligence (AAAI), 2021, pp. 6175–6184.

[6] G. Alfano, S. Greco, F. Parisi, I. Trubitsyna, On preferences and priority rules in abstract argumentation, in: Proc. of International Joint Conference on Artificial
Intelligence (IJCAI), 2022, pp. 2517–2524.

[7] G. Alfano, S. Greco, F. Parisi, I. Trubitsyna, Abstract argumentation framework with conditional preferences, in: Proc. of AAAI Conference on Artificial Intelligence
(AAAI), 2023, pp. 6218–6227.

[8] G. Alfano, S. Greco, F. Parisi, I. Trubitsyna, On acceptance conditions in abstract argumentation frameworks, Inf. Sci. 625 (2023) 757–779.

[9] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri, J. Zangari, The ASP system DLV2, in: Proc. of 14th International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR), 2017, pp. 215–221.
32

9 Condition 𝐶𝑐 in the original paper is 𝑐 → 𝑏. According to the Kleene 3-valued semantics, it has been rewritten as ¬𝑐 ∨ 𝑏.

http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2A66298829B5C81D297E2B35A710986Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2A66298829B5C81D297E2B35A710986Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9222EC4813421C4A8E9D7CC6848B0F16s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9222EC4813421C4A8E9D7CC6848B0F16s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF354FDCBF54212A3F26C98AB971D5A03s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF354FDCBF54212A3F26C98AB971D5A03s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib020730AFC1CF87C4AA369865090E73F9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib020730AFC1CF87C4AA369865090E73F9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib137C8F7F7839EF118B3DC61AF13BC563s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib137C8F7F7839EF118B3DC61AF13BC563s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2D541FBE865A6A458E31603B7DB2B82Bs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2D541FBE865A6A458E31603B7DB2B82Bs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDC9348C3E63EF20CEC36117E46FC6331s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDC9348C3E63EF20CEC36117E46FC6331s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib8EDF3A3723AE5C6518A8058E71B09012s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib921D1E3D8C9D1DF84D5A800BF75737B8s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib921D1E3D8C9D1DF84D5A800BF75737B8s1

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

[10] L. Amgoud, C. Cayrol, On the acceptability of arguments in preference-based argumentation, in: Proc. of the Fourteenth Conference on Uncertainty in Artificial
Intelligence (UAI), 1998, pp. 1–7.

[11] L. Amgoud, C. Cayrol, A reasoning model based on the production of acceptable arguments, Ann. Math. Artif. Intell. 34 (2002) 197–215.

[12] L. Amgoud, H. Prade, Using arguments for making and explaining decisions, Artif. Intell. 173 (2009) 413–436.

[13] L. Amgoud, S. Vesic, A new approach for preference-based argumentation frameworks, Ann. Math. Artif. Intell. 63 (2011) 149–183.

[14] L. Amgoud, S. Vesic, Rich preference-based argumentation frameworks, Int. J. Approx. Reason. 55 (2014) 585–606.

[15] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in inconsistent databases, in: Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, 1999, pp. 68–79.

[16] O. Arieli, Towards constraints handling by conflict tolerance in abstract argumentation frameworks, in: Proc. of the Twenty-Sixth International Florida Artificial
Intelligence Research Society Conference (FLAIRS), 2013.

[17] O. Arieli, Conflict-free and conflict-tolerant semantics for constrained argumentation frameworks, J. Appl. Log. 13 (2015) 582–604.

[18] O. Arieli, On the acceptance of loops in argumentation frameworks, J. Log. Comput. 26 (2016) 1203–1234.

[19] K. Atkinson, T.J.M. Bench-Capon, Argumentation schemes in AI and law, Argument & Computation 12 (2021) 417–434.

[20] A. Avron, Natural 3-valued logics–characterization and proof theory, J. Symb. Log. 56 (1991) 276–294.

[21] P. Baroni, M. Caminada, M. Giacomin, An introduction to argumentation semantics, Knowl. Eng. Rev. 26 (2011) 365–410.

[22] P. Baroni, D. Gabbay, M. Giacomin, L. Van der Torre, Handbook of Formal Argumentation. Volume 1, College Public, 2018.

[23] R. Baumann, What does it take to enforce an argument? Minimal change in abstract argumentation, in: Proc. of the 20th European Conference on Artificial
Intelligence (ECAI), 2012, pp. 127–132.

[24] R. Baumann, M. Heinrich, Bipolar Abstract Dialectical Frameworks Are Covered by Kleene’s Three-Valued Logic, IJCAI, 2023.

[25] T.J.M. Bench-Capon, Persuasion in practical argument using value-based argumentation frameworks, J. Log. Comput. 13 (2003) 429–448.

[26] T.J.M. Bench-Capon, K. Atkinson, A.Z. Wyner, Using argumentation to structure e-participation in policy making, Transactions on Large-Scale Data and
Knowledge-Centered Systems 18 (2015) 1–29.

[27] M. Bernreiter, W. Dvorák, S. Woltran, Abstract argumentation with conditional preferences, in: Computational Models of Argument - Proceedings of COMMA,
2022, pp. 92–103.

[28] A. Bondarenko, P.M. Dung, R.A. Kowalski, F. Toni, An abstract, argumentation-theoretic approach to default reasoning, Artif. Intell. 93 (1997) 63–101.

[29] R. Booth, S. Kaci, T. Rienstra, L.W.N. van der Torre, A logical theory about dynamics in abstract argumentation, in: Proc. of International Conference Scalable
Uncertainty Management (SUM), 2013, pp. 148–161.

[30] M.E.B. Brarda, L.H. Tamargo, A.J. García, Using argumentation to obtain and explain results in a decision support system, IEEE Intell. Syst. 36 (2021) 36–42.

[31] L. Bravo, L.E. Bertossi, Logic programs for consistently querying data integration systems, in: G. Gottlob, T. Walsh (Eds.), Proc. of the Eighteenth International
Joint Conference on Artificial Intelligence (IJCAI), 2003, pp. 10–15.

[32] G. Brewka, Preferred subtheories: an extended logical framework for default reasoning, in: IJCAI, 1989, pp. 1043–1048.

[33] G. Brewka, M. Diller, G. Heissenberger, T. Linsbichler, S. Woltran, Solving advanced argumentation problems with answer set programming, Theory Pract. Log.
Program. 20 (2020) 391–431.

[34] G. Brewka, I. Niemelä, M. Truszczynski, Answer set optimization, in: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence
(IJCAI), 2003, pp. 867–872.

[35] G. Brewka, I. Niemelä, M. Truszczynski, Preferences and nonmonotonic reasoning, AI Mag. 29 (2008) 69–78.

[36] G. Brewka, H. Strass, S. Ellmauthaler, J.P. Wallner, S. Woltran, Abstract dialectical frameworks revisited, in: IJCAI, 2013, pp. 803–809.

[37] F. Buccafurri, N. Leone, P. Rullo, Enhancing disjunctive datalog by constraints, IEEE Trans. Knowl. Data Eng. 12 (2000) 845–860.

[38] M. Calautti, S. Greco, C. Molinaro, I. Trubitsyna, Preference-based inconsistency-tolerant query answering under existential rules, Artif. Intell. 312 (2022) 103772.

[39] M. Caminada, Semi-stable semantics, in: Proc. of Computational Models of Argument (COMMA), 2006, pp. 121–130.

[40] M. Caminada, S. Sá, J.F.L. Alcântara, W. Dvorák, On the equivalence between logic programming semantics and argumentation semantics, Int. J. Approx. Reason.
58 (2015) 87–111.

[41] S. Coste-Marquis, C. Devred, P. Marquis, Constrained argumentation frameworks, in: Proc. of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR), 2006, pp. 112–122.

[42] S. Coste-Marquis, S. Konieczny, J. Mailly, P. Marquis, Extension enforcement in abstract argumentation as an optimization problem, in: Proc. of the Twenty-Fourth
International Joint Conference on Artificial Intelligence (IJCAI), 2015, pp. 2876–2882.

[43] S. Coste-Marquis, S. Konieczny, P. Marquis, M.A. Ouali, Weighted attacks in argumentation frameworks, in: Proc. of the Thirteenth International Conference on
Principles of Knowledge Representation and Reasoning (KR), 2012.

[44] K. Cyras, F. Toni, ABA+: assumption-based argumentation with preferences, in: Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifteenth International Conference (KR), AAAI Press, 2016, pp. 553–556.

[45] Y. Dimopoulos, A. Torres, Graph theoretical structures in logic programs and default theories, Theor. Comput. Sci. 170 (1996) 209–244.

[46] S. Doutre, J. Mailly, Constraints and changes: a survey of abstract argumentation dynamics, Argument & Computation 9 (2018) 223–248.

[47] P.M. Dung, Negations as hypotheses: an abductive foundation for logic programming, in: Logic Programming, in: Proc. of the Eigth International Conference
(ICLP), 1991, pp. 3–17.

[48] P.M. Dung, On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games, AI 77 (1995)
321–358.

[49] P.E. Dunne, T.J.M. Bench-Capon, Coherence in finite argument systems, Artif. Intell. 141 (2002) 187–203.

[50] P.E. Dunne, T.J.M. Bench-Capon, Complexity in value-based argument systems, in: Proc. of 9th European Conference on Logics in Artificial Intelligence (JELIA),
2004, pp. 360–371.

[51] P.E. Dunne, M. Caminada, Computational complexity of semi-stable semantics in abstract argumentation frameworks, in: Proc. of 11th European Conference on
Logics in Artificial Intelligence (JELIA), 2008, pp. 153–165.

[52] P.E. Dunne, A. Hunter, P. McBurney, S. Parsons, M.J. Wooldridge, Weighted argument systems: basic definitions, algorithms, and complexity results, Artif. Intell.
175 (2011) 457–486.

[53] W. Dvorák, P.E. Dunne, Computational problems in formal argumentation and their complexity, FLAP 4 (2017).

[54] W. Dvorák, A. Keshavarzi Zafarghandi, S. Woltran, Expressiveness of setafs and support-free adfs under 3-valued semantics, J. Appl. Non-Class. Log. 33 (2023)
298–327.

[55] W. Dvorák, M. König, M. Ulbricht, S. Woltran, Principles and their computational consequences for argumentation frameworks with collective attacks, J. Artif.
Intell. Res. 79 (2024) 69–136.

[56] W. Dvorák, S. Woltran, Complexity of semi-stable and stage semantics in argumentation frameworks, Inf. Process. Lett. 110 (2010) 425–430.

[57] T. Eiter, M. Fink, G. Greco, D. Lembo, Efficient evaluation of logic programs for querying data integration systems, in: C. Palamidessi (Ed.), Proc. of 19th
International Conference on Logic Programming (ICLP), 2003, pp. 163–177.

[58] T. Eiter, G. Gottlob, On the computational cost of disjunctive logic programming: propositional case, Ann. Math. Artif. Intell. 15 (1995) 289–323.

[59] T. Eiter, N. Leone, D. Saccà, Expressive power and complexity of partial models for disjunctive deductive databases, Theor. Comput. Sci. 206 (1998) 181–218.

[60] W. Faber, M. Vallati, F. Cerutti, M. Giacomin, Solving set optimization problems by cardinality optimization with an application to argumentation, in: Proc. of
33

22nd European Conference on Artificial Intelligence (ECAI), 2016, pp. 966–973.

http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA4D7BDABF49DE138513B80787588D73Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA4D7BDABF49DE138513B80787588D73Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9FC6739DD84416E9E9901795759F2EE0s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF9938D450651564C7C456C4C8577275Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7B8C9B355DE424270F6FF2C5CB4E5A2Fs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib646D103EEB81078B009086DB083D3C6As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7C65F0C79CAFE474B2C0E58B32334C29s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7C65F0C79CAFE474B2C0E58B32334C29s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib35840F0C91B7BACCEA9AB5D2528C8956s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib35840F0C91B7BACCEA9AB5D2528C8956s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib54930499EE56C14FC7BFFD591C80DACFs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib6EE8029296682A76CE93A217813C309Ds1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib917476CEA02CF1A9236134393AE4BEE7s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA19945D88CDD513DA908125D9025F394s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibB93C10E653A35AD22198DBB82C4100A0s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibE7FA3229F934A6C04C54865A5C40DB4Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib5EC22F5B111B0155EDCC4D6C6E09AE69s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib5EC22F5B111B0155EDCC4D6C6E09AE69s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib1214629CA19CC8B9E32ED3E32FE247D9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib189C888941BD9AD54F393F0361D1314Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBAC1697AA34A69A88DE1C15621FAB493s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBAC1697AA34A69A88DE1C15621FAB493s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib57C21B8AE8938598E58472C372213B2As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib57C21B8AE8938598E58472C372213B2As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC76AF42E8769052521A14F62DC3C0864s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibAEBE997513F74E71AC599804F9323868s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibAEBE997513F74E71AC599804F9323868s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibE85DF2CD92E704940FA11E5AE13E0FFFs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib45DD4B6B84DECA014767190EDDAF93E2s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib45DD4B6B84DECA014767190EDDAF93E2s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib17069CDA6E9F9B3F0BCAB7A4CFC7D943s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF25C542F94AC6F04D76527F158B98DCAs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF25C542F94AC6F04D76527F158B98DCAs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC6A00867518F3D983F5027315633F467s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC6A00867518F3D983F5027315633F467s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib4835EBFE75163084EB4CF951F5E53A25s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibAE9F56092D0FBC9FDCF70BC96E9D5DB0s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC78897B3A77BF9690419AE9B0C1E7FDAs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF4C89405223BB3DA179F2D3E035C5E26s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib66757E3020007CA00FEE0202EF9D8FFCs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib6F2EC30F9493024355AFC68329B54C24s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib6F2EC30F9493024355AFC68329B54C24s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib34318CA3F8F03DCE5F20228CC6FE6F41s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib34318CA3F8F03DCE5F20228CC6FE6F41s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBCA28EAB381DD289AD27A4EF6464BF55s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBCA28EAB381DD289AD27A4EF6464BF55s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib29FFF4EC3AF6F18CD9E429919AB8844Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib29FFF4EC3AF6F18CD9E429919AB8844Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib05758B7F26CE99810450F27EB66C34D5s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib05758B7F26CE99810450F27EB66C34D5s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib14A4487E2F0639447763A4ECA1F2D73As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibE299AB36C4CD2F4C67BF2386D54A01CBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7C88E3B13F43AF44E8F10E5715C27295s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7C88E3B13F43AF44E8F10E5715C27295s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibCAB3809B47BC615992CDF63EAC652008s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibCAB3809B47BC615992CDF63EAC652008s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA3448C0AFEDF70DF36CE083F8F37708Bs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC3E1B17492060FE310394EF14F790CF6s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC3E1B17492060FE310394EF14F790CF6s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA040897DFE25E7B8B159845D29712169s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA040897DFE25E7B8B159845D29712169s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib6327796F75C25AAB7C30E4E98C1571BBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib6327796F75C25AAB7C30E4E98C1571BBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibEDACD2D3DE9518FE4CAE43B5C59A896Ds1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDAD7C5B562933F3746E4BA312E1BD29Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDAD7C5B562933F3746E4BA312E1BD29Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDDFBC9ED5CDDBE7C304E6F0EFC5A79C9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDDFBC9ED5CDDBE7C304E6F0EFC5A79C9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC416CB2073E3738BF240E7C98753FC14s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib747F402C182AE1BBCA6ED325F670F6CAs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib747F402C182AE1BBCA6ED325F670F6CAs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib49D12CA46F0227A2E678D97E713FC696s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9B9CD076F9A55A8FFD4319E45AA7388As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib4BF6617802D518A7F35BDF982D44068Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib4BF6617802D518A7F35BDF982D44068Es1

Artificial Intelligence 336 (2024) 104205G. Alfano, S. Greco, D. Mandaglio et al.

[61] S. Flesca, F. Furfaro, F. Parisi, Preferred database repairs under aggregate constraints, in: Proc. of International Conference on Scalable Uncertainty Management
(SUM), 2007, pp. 215–229.

[62] G. Flouris, A. Bikakis, A comprehensive study of argumentation frameworks with sets of attacking arguments, Int. J. Approx. Reason. 109 (2019) 55–86.

[63] D. Gabbay, M. Giacomin, G.R. Simari, M. Thimm (Eds.), Handbook of Formal Argumentation, vol. 2, College Public, 2021.

[64] A.J. Garcia, H. Prakken, G.R. Simari, A comparative study of some central notions of ASPIC+ and delp, Theory Pract. Log. Program. 20 (2020) 358–390.

[65] G. Greco, S. Greco, E. Zumpano, A logical framework for querying and repairing inconsistent databases, IEEE Trans. Knowl. Data Eng. 15 (2003) 1389–1408.

[66] S. Greco, Non-determinism and weak constraints in datalog, New Gener. Comput. 16 (1998) 373–396.

[67] J. Heyninck, G. Kern-Isberner, T. Rienstra, K. Skiba, M. Thimm, Possibilistic logic underlies abstract dialectical frameworks, in: IJCAI, 2022, pp. 2655–2661.

[68] T. Janhunen, I. Niemelä, D. Seipel, P. Simons, J.H. You, Unfolding partiality and disjunctions in stable model semantics, ACM Trans. Comput. Log. 7 (2006).

[69] S. Kaci, L. van Der Torre, S. Vesic, S. Villata, Preference in abstract argumentation, in: Handbook of Formal Argumentation, Volume 2, 2021, pp. 199–236,
Chapter 3.

[70] S. Kaci, L.W.N. van der Torre, Preference-based argumentation: arguments supporting multiple values, Int. J. Approx. Reason. 48 (2008) 730–751.

[71] S. Kaci, L.W.N. van der Torre, S. Villata, Preference in abstract argumentation, in: Proc. of International Conference on Computational Models of Argument
(COMMA), 2018, pp. 405–412.

[72] N. Kökciyan, I. Sassoon, E. Sklar, S. Modgil, S. Parsons, Applying metalevel argumentation frameworks to support medical decision making, IEEE Intell. Syst. 36
(2021) 64–71.

[73] N. Kökciyan, N. Yaglikci, P. Yolum, An argumentation approach for resolving privacy disputes in online social networks, ACM Trans. Internet Technol. 17 (2017)
27:1–27:22.

[74] M.W. Krentel, The complexity of optimization problems, in: STOC, 1986, pp. 69–76.

[75] T. Linsbichler, J. Pührer, H. Strass, A uniform account of realizability in abstract argumentation, in: Proc. of ECAI, 2016, pp. 252–260.

[76] T. Lukasiewicz, E. Malizia, C. Molinaro, Complexity of inconsistency-tolerant query answering in datalog+/- under preferred repairs, in: Proceedings of the 20th
International Conference on Principles of Knowledge Representation and Reasoning (KR), 2023, pp. 472–481.

[77] M.V. Martinez, F. Parisi, A. Pugliese, G.I. Simari, V.S. Subrahmanian, Policy-based inconsistency management in relational databases, Int. J. Approx. Reason. 55
(2014) 501–528.

[78] S. Modgil, Reasoning about preferences in argumentation frameworks, Artif. Intell. 173 (2009) 901–934.

[79] S. Modgil, H. Prakken, A general account of argumentation with preferences, Artif. Intell. 195 (2013) 361–397.

[80] S.H. Nielsen, S. Parsons, A generalization of Dung’s abstract framework for argumentation: arguing with sets of attacking arguments, in: Proc. of Third Interna-

tional Workshop on Argumentation in Multi-Agent Systems (ArgMAS), 2006, pp. 54–73.

[81] A. Niskanen, J.P. Wallner, M. Järvisalo, Extension enforcement under grounded semantics in abstract argumentation, in: Proc. of the Sixteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR), 2018, pp. 178–183.

[82] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[83] F. Parisi, J. Grant, On measuring inconsistency in definite and indefinite databases with denial constraints, Artif. Intell. 318 (2023) 103884.

[84] A. Pazienza, D. Grossi, F. Grasso, R. Palmieri, M. Zito, S. Ferilli, An abstract argumentation approach for the prediction of analysts’ recommendations following
earnings conference calls, Intell. Artif. 13 (2019) 173–188.

[85] S. Polberg, Understanding the abstract dialectical framework, in: Proc. of JELIA, 2016, pp. 430–446.

[86] A. Ramos, Two new weak constraint qualifications for mathematical programs with equilibrium constraints and applications, J. Optim. Theory Appl. 183 (2019)
566–591.

[87] D. Saccà, The expressive powers of stable models for bound and unbound DATALOG queries, J. Comput. Syst. Sci. 54 (1997) 441–464.

[88] D. Saccà, C. Zaniolo, Stable models and non-determinism in logic programs with negation, in: Proc. of PODS, 1990, pp. 205–217.

[89] C. Sakama, T.C. Son, Epistemic argumentation framework: theory and computation, J. Artif. Intell. Res. 69 (2020) 1103–1126.

[90] R. Silva, S. Sá, J.F.L. Alcântara, Semantics hierarchy in preference-based argumentation frameworks, in: COMMA, 2020, pp. 339–346.

[91] M. Snaith, R.Ø. Nielsen, S.R. Kotnis, A. Pease, Ethical challenges in argumentation and dialogue in a healthcare context, Argument & Computation 12 (2021)
249–264.

[92] H. Strass, J.P. Wallner, Analyzing the computational complexity of abstract dialectical frameworks via approximation fixpoint theory, Artif. Intell. 226 (2015)
34–74.

[93] J.P. Wallner, A. Niskanen, M. Järvisalo, Complexity results and algorithms for extension enforcement in abstract argumentation, J. Artif. Intell. Res. 60 (2017)
34

1–40.

http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA57EBB799353E77932FC6D74133EBCA6s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA57EBB799353E77932FC6D74133EBCA6s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2A51CC0A36B1DE65A6B64FA32E90DB9Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBF3C80C81BC878FAE588F4EF45B263DFs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib734D9260639CBFAB671A26B316FB3A67s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDEA3C52C29FE088C316994F6132B52B7s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib5F7A4BC2DF5E86100A5BA57E5CE8D085s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib974A06A7EBB1F66B6E67166CCD97730Fs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibA032208DBE500AE47AD42253F84CA493s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDF152DF5E823FA3E9A382B6B0AB49563s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibDF152DF5E823FA3E9A382B6B0AB49563s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF19D39362EFE2CC83E8D608445D972C0s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib59B4CA1B46DA69B24AFFEB557EEA360Ds1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib59B4CA1B46DA69B24AFFEB557EEA360Ds1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib051F3F7D049CEE601F8AFDECE09F99EEs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib051F3F7D049CEE601F8AFDECE09F99EEs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib43033614D8842F61E983FB16B09BFDF9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib43033614D8842F61E983FB16B09BFDF9s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib2A2873B58D9BCF9451203CBCD65D2443s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib519691B74EA4ED07624FE9EF322E2877s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib0973BA80A29FFAE476B62BF9B232A7B8s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib0973BA80A29FFAE476B62BF9B232A7B8s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib3C523094C849C9164A498F6324F627FBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib3C523094C849C9164A498F6324F627FBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibFD28B2BB12A92D9C275BA827EA944BBDs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib010BA9F57CDCA1519281371F1177BD19s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibAF9BCD4CECB0425E0202433AE9C26837s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibAF9BCD4CECB0425E0202433AE9C26837s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib86BF93E8EC9EF4F5E11E81B8FD09F33Bs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib86BF93E8EC9EF4F5E11E81B8FD09F33Bs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib7EB8A7EEB7F41F3B344A4EA2D1BEB5EBs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibE2F328A019E819BC931540F249FC3E99s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib783991C77333B65A758D860A283A5E08s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib783991C77333B65A758D860A283A5E08s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib59DE5D79E0CE31FEC7892AC6AD262259s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9F0EF01D3EADC87929CAB7FBD561F66As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib9F0EF01D3EADC87929CAB7FBD561F66As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibC1FE90197BC12D42ACC57300D263DFA4s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibEDB5AD1459714780BB0EF4658345A1D0s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib99840C20D969CBA0525390CCEAA48A4Es1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibF993E1E6909D651166E3F4EB65A4AE6Cs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBE0D7257DEC555AA6EBA8374A7DBA3E8s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bibBE0D7257DEC555AA6EBA8374A7DBA3E8s1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib434E57268EB0D5E3526E162BFDFB439As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib434E57268EB0D5E3526E162BFDFB439As1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib43CB04F5DDAEFF49C219EB41E86C1CBCs1
http://refhub.elsevier.com/S0004-3702(24)00141-3/bib43CB04F5DDAEFF49C219EB41E86C1CBCs1

	Abstract argumentation frameworks with strong and weak constraints
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Preliminaries
	2.1 Argumentation framework
	2.2 Complexity classes

	3 Constrained argumentation frameworks
	3.1 CAF semantics
	3.1.1 Semantics of Coste-Marquis et al.
	3.1.2 Arieli’s semantics

	4 Revisiting the CAF semantics
	4.1 Complexity of credulous and skeptical acceptance

	5 Weak constrained AF
	5.1 Maximal-set semantics
	5.2 Maximum-cardinality semantics

	6 Stratified constraints in WAF
	7 CAF and WAF with denial constraints
	8 Encoding preferences through WAF
	9 Related work
	10 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Proofs
	A.1 WAF with maximal-set semantics
	A.2 WAF with maximum-cardinality semantic
	A.3 WAF with stratified weak constraints
	A.4 WAF with linearly ordered weak constraints
	A.5 WAF with denial constraints

	Appendix B Normal and disjunctive logic programs
	B.1 Normal logic programs
	B.2 Disjunctive logic programs
	B.2.1 Computing partial stable models

	B.3 Logic programs and argumentation frameworks

	Appendix C Weak constrained logic programs
	C.1 Mapping disjunctive programs to weak constrained logic programs

	Appendix D Abstract argumentation framework with epistemic constraints
	D.1 Labelling
	D.2 AF with epistemic constraints
	D.3 AF with labelled constraints

	Appendix E Background on ADF
	References

