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We present a conceptualization providing an original domain-independent perspective on two 
crucial properties in reasoning: consistency and reinstatement. They emerge as a pair of 
dual characteristics, representing complementary requirements on the outcomes of reasoning 
processes. Central to our formalization are two underlying parametric relations: incompatibility 
and reinstatement violation. Different instances of these relations give rise to a spectrum of 
consistency and reinstatement scenarios. As a demonstration of versatility and expressive power 
of our approach we provide a characterization of various abstract argumentation semantics which 
are expressed as combinations of distinct consistency and reinstatement constraints. Moreover, 
we conduct an investigation into preserving these essential properties across different reasoning 
stages. Specifically, we delve into scenarios where a labelling is derived from other labellings 
through a synthesis function, using the synthesis of argument justification as an illustrative 
instance. We achieve a general characterization of consistency preservation synthesis functions, 
while we unveil an impossibility result concerning reinstatement preservation, leading us to 
explore an alternative notion to ensure feasibility. Our exploration reveals a weakness in the 
traditional definition of argument justification, for which we propose a refined version overcoming 
this limitation.

1. Introduction

In many contexts, intelligent agents need to assess the elements pertaining to a scenario of their interest with respect to some 
criterion, e.g., evaluating a set of propositions according to their credibility, or a set of actions according to their advisability.

Generally speaking, the production of this kind of assessment has to take into account two complementary needs. On the one 
hand, agents need to satisfy some constraints, inherent to the scenario of interest, which prevent the simultaneous positive evaluation 
of some elements. For instance, one cannot fully believe a proposition and its negation at the same time or cannot select together two 

✩ This paper integrates and substantially extends the initial results presented at a conference [1] and a workshop [2] by the same authors. In particular, [1] deals 
with generalizing the notion of consistency only and thus provides some partial and preliminary results with respect to the present work. The subsequent workshop 
paper [2] extends [1] by providing some results concerning both notions, but does not address the problem of preservation. Moreover, the discussion of related 
literature is quite limited in [1] and [2].
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incompatible actions, like moving straight and turning right. Thus, in a sense, these constraints provide a sort of upper bound to the 
positive evaluations one can produce.

On the other hand, agents also need to avoid unjustified, overly negative evaluations since they would lead to a situation of inertia 
and inability to act, as in the extreme case where nothing is believed and none of the available actions is adopted. Thus, the need 
to avoid an undesirable situation of nihilism and paralysis induces a sort of lower bound on the evaluations that is reasonable to 
produce.

The fact that the information used to produce the evaluation is typically incomplete and uncertain, together with the variety of 
attitudes an agent can adopt, ranging from cautiousness to braveness, introduces a spectrum of alternatives in the above sketched 
picture.

First, the choice of upper and lower bounds deemed sensible can be subjective. Further, there can be room for the production of a 
set of different assessments, each individually reasonable, being included in the range between the chosen upper and lower bounds. 
Last but not least, producing a set of different assessments may call for a further step of synthesis, whose outcome should also obey 
the chosen bounds.

The high-level description provided above finds a technical counterpart in the field of formal argumentation [3–6]. In a nutshell, 
it provides models to represent the reasoning activity of an agent in terms of the production and evaluation of arguments, where, in 
general terms, an argument can be conceived as a possibly (and typically) uncertain and fallible derivation of some conclusion from 
a set of premises.

In particular, in formal argumentation, the presence of conflicts between arguments is a key unavoidable aspect. It represents a 
challenge that calls for mechanisms able to produce sensible reasoning outcomes in terms of assessments of the acceptability of argu-

ments, given their conflicts. These outcomes are typically required to satisfy two somewhat dual properties, intuitively corresponding 
to the upper and lower bounds previously discussed.

On the one hand, the outcomes are required to respect some notion of consistency related to the existence of attacks. For instance, in 
abstract argumentation semantics [7,8], the produced argument assessments are typically required to satisfy the property of conflict-

freeness, namely if there is a conflict between two arguments they cannot be accepted at the same time.

On the other hand, the outcomes are also required to comply with some notion of reinstatement [9], entailing that arguments 
cannot be rejected without reason. For instance, a requirement common to many argumentation semantics is that an argument is 
accepted when all of its attackers are rejected.

While the properties mentioned above are included among the basic principles underlying the definition of abstract argumentation 
semantics [10,11], the following observations suggest that a deeper foundational investigation of their nature and properties is worth 
pursuing.

First, while these properties are usually defined with reference to a specific formal context (like e.g., abstract argumentation), they 
correspond to basic intuitive requirements, which can be found in various, conceptually analogous, forms across different domains, 
like, for instance, multi-criteria decision making, voting systems, legal reasoning, and belief revision. This suggests the opportunity 
of devising a general domain-independent characterization of the underlying common notions, in order to shed light on the shared 
essential elements underlying different contexts, and of studying their properties at a level of abstraction that allows a broad reuse 
of the achieved results.

Second, even when focusing on a specific formal context, it emerges that consistency and reinstatement may allow a spectrum 
of actual realizations. Framing this spectrum of possibilities within a domain-independent model is very useful for systematically 
analyzing and comparing the set of available alternatives. This may support a better understanding and reappraisal from an original 
perspective of solutions already considered in the past and may also favour the investigation of novel ones.

Third, a reasoning process may involve a sequence of stages, each stage producing some assessment and passing it as input to 
the next one. As different as these assessments at different stages may be, they may share the need to comply with some consistency 
and reinstatement requirements. The question of ensuring the preservation of these requirements across different stages appears to 
be of high interest both from a theoretical and a practical point of view. Again, addressing this question imposes the use of a general 
model, able to capture and relate the properties of different stages within a unifying framework.

Building on the above observations, this paper contributes to the study of general notions of consistency and reinstatement and 
demonstrates their use in formal argumentation as follows.

To address the first point, Section 2 introduces a general representation of assessments based on labellings and proposes generalized 
notions of consistency and reinstatement, applicable in any context where a labelling approach is adopted. The essential ingredients 
of the approach are an intolerance relation, which indicates pairs of labelled elements that cannot stay together, and two relations 
between labels, called incompatibility and reinstatement violation, which express the constraints corresponding to consistency and 
reinstatement, respectively. Well-foundedness properties for these relations are investigated, and their dual nature is evidenced.

As a demonstration of the ability of the proposed notions to capture a spectrum of alternatives, we prove in Section 3 that a variety 
of traditional abstract argumentation semantics proposed by Dung [7] can be expressed as combinations of different consistency and 
reinstatement requirements, i.e., varying the choice of the incompatibility and reinstatement violation relations.

Then, concerning the third point, in Section 4 we examine the issue of consistency and reinstatement preservation in the case 
where a set of labellings is aggregated through a simple synthesis function. This abstract notion captures, in particular, the process 
of deriving a synthetic argument justification status from a set of argument acceptability labellings. As to consistency preservation, 
we achieve a characterization of consistency preserving simple synthesis functions and use it to analyze the preservation capabilities 
of the traditional notion of argument justification. As to reinstatement preservation, we obtain an impossibility result in the general 
2

case and, to overcome this difficulty, propose a weaker requirement and then provide a characterization of weakly reinstatement 
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preserving simple synthesis functions. The developed analysis leads us to point out a limitation, from a reinstatement perspective, of 
the traditional notion of argument justification and to propose an improved version.

The paper is then completed by a discussion of related works and future research perspectives in Section 5 and some final remarks 
in Section 6.

2. Generalizing consistency and reinstatement for labelling-based systems

In a variety of contexts, the assessments of entities of various kinds are expressed by assigning them a label. To provide a common 
ground to characterize such different contexts, we present a three-layer model based on the proposal in [1], which includes the 
following levels:

• At the top level, the notion of assessment classes is introduced to provide a reference point to characterize different assessment 
labels and to relate and compare them. These classes have an underlying order, intuitively reflecting a notion of positivity, 
whatever the meaning assigned to positive in a given context.

• At an intermediate level, assessment labels are taken from a predefined set and classified on the basis of assessment classes, thus 
inheriting the relevant positivity degree.

• At the bottom level, a generic set of entities can be assessed by assigning each entity a label.

Example 2.1. An illustration of the three-layer model, which will be used as running example, is provided in Fig. 1. We provide a 
high level description here, while more details will be introduced later along with formal definitions. At the top layer we consider 
a set 𝐶3 of three assessment classes, 𝗉𝗈𝗌, 𝗆𝗂𝖽, 𝗇𝖾𝗀, intuitively corresponding to a positive (or high), intermediate (or medium), and 
negative (or low) evaluation. These classes can be used to provide a common reference scale for sets of labels adopted in different 
contexts and constituting the second layer of the model. For instance, in Fig. 1 we consider two sets of labels that can be used to 
acquire customer opinions about the features of some products, e.g. through a website. Some websites may use a scale based on stars 
(from 1 to 5), indicated as Λ1, others may use a less refined scale, Λ2, based on three emoticons. In order to aggregate or compare 
opinions coming from different sources, sets of labels have to be put in correspondence with the common reference scale. A possible 
way of doing this is shown in the figure. At the third layer, entities to be assessed are labelled using the sets of labels from the 
second layer. In the figure we consider acquiring the indications of customers about the features they desire in a travel. The example 
considers four features and presents the indications of three hypotethical customers expressed as labellings, where 𝐿1 and 𝐿3 are 
based on Λ1, while 𝐿2 is based on Λ2.

The model is general and applicable to any domain where labellings are used for assessment. Besides the illustrative example in 
Fig. 1, formal argumentation (see [3] for a comprehensive overview of the field), being a paradigmatic example of such domains, 
will be used as the main reference context to illustrate the approach and then to achieve specific results based on it.

Definition 2.1. A set of assessment classes is a set 𝐶 equipped with a total order ≤ (i.e., a reflexive, transitive, and antisymmetric 
relation such that any two elements are comparable) and including a maximum and a minimum element (i.e., an element 𝑐 ∈ 𝐶 such 
that ∀𝑐′ ∈ 𝐶 it holds that 𝑐′ ≤ 𝑐 or 𝑐 ≤ 𝑐′, respectively) which are assumed to be distinct.

In the following, we will abbreviate the term ‘set(s) of assessment classes’ as 𝗌𝖺𝖼(𝗌). Intuitively, the order is meant to capture an 
abstract distinction between different levels of positivity of the assessment, with 𝑐1 ≤ 𝑐2 meaning that 𝑐2 corresponds to an at least as 
positive assessment as 𝑐1. We will mainly use the tripolar 𝗌𝖺𝖼 𝐶3 = {𝗉𝗈𝗌, 𝗆𝗂𝖽, 𝗇𝖾𝗀} shown in Fig. 1, with 𝗇𝖾𝗀 ≤𝗆𝗂𝖽 ≤ 𝗉𝗈𝗌. The basic 
idea, expressed by the following definition, is that a 𝗌𝖺𝖼 is used to classify the elements of a set of labels according to their level of 
positivity. Note that the elements of a 𝗌𝖺𝖼 are called classes because, in general, more than one label can be mapped to the same class.

Definition 2.2. Given a set of assessment classes 𝐶 , a 𝐶 -classified set of assessment labels is a set Λ equipped with a total function 
𝐶Λ ∶ Λ → 𝐶 . The total preorder induced on Λ by 𝐶Λ will be denoted by ⪯ where 𝜆1 ⪯ 𝜆2 iff 𝐶Λ(𝜆1) ≤ 𝐶Λ(𝜆2). As usual, 𝜆1 ≺ 𝜆2 will 
denote 𝜆1 ⪯ 𝜆2 and 𝜆2  𝜆1, while 𝜆1 ≈ 𝜆2 will denote 𝜆1 ⪯ 𝜆2 and 𝜆2 ⪯ 𝜆1.

The fact that ⪯ is a total preorder is shown in the following proposition.

Proposition 2.1. Given a set of assessment classes 𝐶 and a 𝐶 -classified set of assessment labels Λ, the relation ⪯ as introduced in Defini-

tion 2.2 is reflexive and transitive, and for any 𝜆1, 𝜆2 ∈ Λ, 𝜆1 ⪯ 𝜆2 or 𝜆2 ⪯ 𝜆1.

Proof. Consider 𝜆1, 𝜆2, 𝜆3 ∈ Λ. By reflexivity of ≤ it holds that 𝐶Λ(𝜆1) ≤ 𝐶Λ(𝜆1), i.e., 𝜆1 ⪯ 𝜆1. Similarly, if 𝜆1 ⪯ 𝜆2 and 𝜆2 ⪯ 𝜆3, by 
transitivity of ≤ it holds that 𝐶Λ(𝜆1) ≤ 𝐶Λ(𝜆3), i.e., 𝜆1 ⪯ 𝜆3. Finally, since ≤ is total and reflexive it holds that 𝐶Λ(𝜆1) ≤ 𝐶Λ(𝜆2) or 
𝐶Λ(𝜆2) ≤ 𝐶Λ(𝜆1), i.e., 𝜆1 ⪯ 𝜆2 or 𝜆2 ⪯ 𝜆1. □

It is easy to see that ⪯ is not necessarily an order, since different labels can be classified with the same assessment class, thus 
3

antisymmetry does not hold.
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Fig. 1. An illustration of the three-layer model.

We will abbreviate the term ‘set(s) of assessment labels’ as 𝗌𝖺𝗅(𝗌) and omit ‘𝐶 -classified’, when 𝐶 is not ambiguous. Also, to 
distinguish preorders referring to different 𝗌𝖺𝗅𝗌, given a 𝗌𝖺𝗅 Λ we will denote the relevant preorder as ⪯Λ.

Example 2.2. In Fig. 1 we show two 𝗌𝖺𝗅𝗌, namely Λ1 and Λ2. In particular, the classification of the labels in Λ1 is given by 𝐶3
Λ1

=
{(1, 𝗇𝖾𝗀), (2, 𝗇𝖾𝗀), (3, 𝗆𝗂𝖽), (4, 𝗉𝗈𝗌), (5, 𝗉𝗈𝗌)}. The induced ordering is such that 1 ≈ 2 ≺ 3 ≺ 4 ≈ 5. The function 𝐶3

Λ2
and the relevant 

induced ordering are obvious.

We can now introduce the notion of labelling based on a 𝗌𝖺𝗅.

Definition 2.3. Given a 𝗌𝖺𝗅 Λ and a set 𝑆 , a Λ-labelling of 𝑆 is a function 𝐿 ∶ 𝑆 →Λ.

Example 2.3. Different 𝗌𝖺𝗅𝗌 can be used to express assessments in distinct, but possibly related, evaluation contexts. In Fig. 1, the set 
𝑆 consists of four features of a travel, namely adventure, luxury, low cost, exotic (denoted shortly as 𝖠𝖽𝗏, 𝖫𝗎𝗑, 𝖫𝗈𝗐, 𝖤𝗑𝗈). 𝐿1 and 𝐿3
are Λ1-labellings of 𝑆 , while 𝐿2 is a Λ2-labelling of 𝑆 . 𝐿1 expresses the opinion of a customer who values luxury and low cost and 
definitely dislikes adventure in a travel, while 𝐿2 provides the rather complementary view of a customer who appreciates adventure 
and is not really interested in low cost.

Turning to formal argumentation, in the context of argument acceptance evaluation based on the labelling-based version of 
Dung’s semantics [7,8], the 𝗌𝖺𝗅 ΛIOU = {𝗂𝗇, 𝗈𝗎𝗍, 𝗎𝗇𝖽} is used, while in Defeasible Logic Programming [12] arguments are marked as 
D(efeated) or U(ndefeated) corresponding to the use of the 𝗌𝖺𝗅 ΛDe = {𝖣, 𝖴}, and in [13] an approach using the set of four labels 
ΛJV = {+, −, ±, ∅} is proposed. The 𝗌𝖺𝗅𝗌 mentioned above can be 𝐶3-classified as follows: 𝐶3

ΛIOU
= {(𝗂𝗇, 𝗉𝗈𝗌), (𝗈𝗎𝗍, 𝗇𝖾𝗀), (𝗎𝗇𝖽, 𝗆𝗂𝖽)}; 

𝐶3
ΛDe

= {(𝖣, 𝗇𝖾𝗀), (𝖴, 𝗉𝗈𝗌)}; 𝐶3
ΛJV

= {(−, 𝗇𝖾𝗀), (+, 𝗉𝗈𝗌), (±, 𝗆𝗂𝖽), (∅, 𝗆𝗂𝖽)}.

We are now ready to introduce the generalized notions of consistency and reinstatement in this formal context. Intuitively, they 
correspond to dual requirements aimed at satisfying somehow conflicting goals.

An inconsistency arises when two elements of a set that cannot stay together are assigned labels which are too positive overall. Corre-

spondingly, consistency is satisfied whenever this situation does not hold for any couple of elements.

Reinstatement is violated when an element of a set is assigned a label which is too negative, i.e., a negative label is assigned without 
a sufficient reason. A sufficient reason holds if another element that cannot stay together is assigned a sufficiently positive 
label. Correspondingly, reinstatement holds whenever a sufficiently positive label is assigned to any element such that all of its 
conflicting elements are negatively assessed.

It can be seen that consistency and reinstatement are dual properties. In particular, a skeptical assessment which assigns the most 
negative label to all elements trivially satisfies consistency but violates reinstatement. Conversely, assigning the most positive label 
to all elements trivially satisfies reinstatement, but violates consistency whenever two elements cannot stay together.

According to this informal introduction, both inconsistency and reinstatement violation can be understood as arising from two 
components: an intolerance relation at the level of the assessed elements, indicating who cannot stay with whom, and a relation at 
the level of the labels indicating which pairs of assessments correspond to a violation if ascribed to a pair of elements connected by 
the intolerance relation.

Definition 2.4. Given a set 𝑆 , an intolerance relation on 𝑆 is a binary relation 𝗂𝗇𝗍 ⊆ 𝑆 × 𝑆 , where (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 indicates that 𝑠1 is 
intolerant of 𝑠2 and will be denoted as 𝑠1 ⊙𝑠2, while (𝑠1, 𝑠2) ∉ 𝗂𝗇𝗍 will be denoted as 𝑠1 ⊖𝑠2. We will also denote as 𝑠𝑛𝑡(𝑠2) the set of 
4

elements intolerant of 𝑠2: 𝑠𝑛𝑡(𝑠2) ≜ {𝑠1 ∈ 𝑆 ∣ 𝑠1 ⊙ 𝑠2}.
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Fig. 2. Two elements 𝑠1 , 𝑠2 such that 𝑠1 ⊙ 𝑠2 . The intolerance relation is graphically represented by an arrow.

Note that we do not make any assumption on the intolerance relation; in particular, it needs not to be symmetric.

Example 2.4. In our running example, we can assume that some features cannot be present in the same travel, because they are 
inherently in conflict (or just because there are no available travel offers enjoying those features together). For instance, one can 
consider that there is a mutual intolerance between adventure and luxury, and between luxury and low cost, yielding for our travel 
example the intolerance relation 𝗂𝗇𝗍𝑡𝑟 = {(𝖠𝖽𝗏, 𝖫𝗎𝗑), (𝖫𝗎𝗑, 𝖠𝖽𝗏), (𝖫𝗈𝗐, 𝖫𝗎𝗑), (𝖫𝗎𝗑, 𝖫𝗈𝗐)}.

Turning to formal argumentation, in languages equipped with negation, typically intolerance between language elements coincides 
with negation (a symmetric relation where each element has exactly one opposite). However, more general forms of contrariness 
have been considered in argumentation contexts, where the corresponding intolerance relation may not be symmetric and allows the 
existence of multiple contraries for an element [14,15]. Moving from the language level to the argument level, the attack relation in 
Dung’s argumentation frameworks (see Section 3) can be regarded as an example of intolerance relation.

Due to the dual nature of consistency w.r.t. reinstatement, violations at the level of the labellings are modelled by distinct relations, 
namely an incompatibility relation and a reinstatement violation relation on assessment labels, respectively. In the following, we will 
assume that each of these relations on assessment labels is always induced by a corresponding relation on assessment classes.

Definition 2.5. Given a 𝗌𝖺𝖼 𝐶 , an incompatibility relation on 𝐶 is a relation 𝗂𝗇𝖼 ⊆ 𝐶 × 𝐶 , where (𝑐1, 𝑐2) ∈ 𝗂𝗇𝖼 indicates that 𝑐1 is 
incompatible with 𝑐2 and will be denoted as 𝑐1⊡𝑐2, while (𝑐1, 𝑐2) ∉ 𝗂𝗇𝖼 will be denoted as 𝑐1⊟𝑐2. Given a 𝐶 -classified 𝗌𝖺𝗅 Λ, we 
define the induced incompatibility relation 𝗂𝗇𝖼′ ⊆Λ ×Λ as follows: for every 𝜆1, 𝜆2 ∈ Λ, (𝜆1, 𝜆2) ∈ 𝗂𝗇𝖼′ iff (𝐶Λ(𝜆1), 𝐶Λ(𝜆2)) ∈ 𝗂𝗇𝖼. With a 
little abuse of notation we will also denote (𝜆1, 𝜆2) ∈ 𝗂𝗇𝖼′ as 𝜆1⊡𝜆2, and analogously for 𝜆1⊟𝜆2. Given a label 𝜆, we define the set of 
labels which are compatible with 𝜆 according to 𝗂𝗇𝖼′ as 𝑐𝑐(𝜆) ≜ {𝜆′ ∈ Λ ∣ (𝜆, 𝜆′) ∉ 𝗂𝗇𝖼′}.

Definition 2.6. Given a 𝗌𝖺𝖼 𝐶 , a reinstatement violation relation on 𝐶 is a relation 𝗋𝗏 ⊆ 𝐶 ×𝐶 , where (𝑐1, 𝑐2) ∈ 𝗋𝗏 indicates that 𝑐1 is not 
sufficiently positive to justify 𝑐2 and will be denoted as 𝑐1⊡𝑐2, while (𝑐1, 𝑐2) ∉ 𝗋𝗏 will be denoted as 𝑐1⊟𝑐2. Given a 𝐶 -classified 𝗌𝖺𝗅 Λ, 
we define the induced reinstatement violation relation 𝗋𝗏′ ⊆Λ ×Λ as follows: for every 𝜆1, 𝜆2 ∈ Λ, (𝜆1, 𝜆2) ∈ 𝗋𝗏′ iff (𝐶Λ(𝜆1), 𝐶Λ(𝜆2)) ∈ 𝗋𝗏. 
With a little abuse of notation we will also denote (𝜆1, 𝜆2) ∈ 𝗋𝗏′ as 𝜆1⊡𝜆2, and analogously for 𝜆1⊟𝜆2. Given a label 𝜆, we define the 
set of labels which are compatible with 𝜆 according to 𝗋𝗏′ as 𝑟𝑐(𝜆) ≜ {𝜆′ ∈ Λ ∣ (𝜆, 𝜆′) ∉ 𝗋𝗏′} and the set of labels which are backwards 
compatible1 with 𝜆 according to 𝗋𝗏′ as ⃖⃖ ⃖𝑟𝑐(𝜆) ≜ {𝜆′ ∈ Λ ∣ (𝜆′, 𝜆) ∉ 𝗋𝗏′} = {𝜆′ ∈ Λ ∣ 𝜆 ∈ 𝑟𝑐(𝜆′)}.

From the intuitions underlying the concepts of consistency and reinstatement, some rather natural properties can be identified for 
incompatibility and, in a dual manner, for reinstatement violation relations on 𝐶 . The following definition introduces these properties 
for incompatibility relations.

Definition 2.7. Given a 𝗌𝖺𝖼 𝐶 , let 𝗂𝗇𝖼 be an incompatibility relation on 𝐶 . We say that 𝗂𝗇𝖼 is well-founded if it satisfies the following 
properties:

• 𝗂𝗇𝖼 is monotonic, i.e., given 𝑐1, 𝑐2 ∈ 𝐶 such that 𝑐1⊡𝑐2, for every pair 𝑐′1, 𝑐
′
2 ∈ 𝐶 such that 𝑐1 ≤ 𝑐′1 and 𝑐2 ≤ 𝑐′2 it holds that 𝑐′1⊡𝑐′2

• 𝗂𝗇𝖼 is non empty, i.e., 𝗂𝗇𝖼 ≠ ∅
• ∀𝑐1 ∈ 𝐶 , ∃𝑐2 ∈ 𝐶 such that 𝑐1⊟𝑐2 and ∃𝑐3 ∈ 𝐶 such that 𝑐3⊟𝑐1

In order to discuss these properties, let us remark again that incompatibility refers to the situation where labels are assigned to 
entities which are linked by intolerance. For instance, in a context where statements are assessed and intolerance between them 
corresponds to contradiction, two (not necessarily distinct) positive labels expressing belief should be incompatible: they cannot be 
assigned to two contradictory statements, since you cannot believe both of them.

Let us then consider the simple case depicted in Fig. 2, involving two elements 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2, and a Λ-labelling 𝐿
such that 𝐿(𝑠1) = 𝜆1, 𝐿(𝑠2) = 𝜆2, 𝐶Λ(𝜆1) = 𝑐1 and 𝐶Λ(𝜆2) = 𝑐2.

The first property of Definition 2.7 relies on the idea that inconsistency arises from a sort of ‘excess of simultaneous positiveness’ 
in the assessment of some elements linked by intolerance. In particular, 𝑐1⊡𝑐2 indicates that the simultaneous positiveness of the 

1 Backward compatibility concerns the case where the label 𝜆 is assigned to the target (rather than to the source) of an intolerance relation and 𝜆′ is assigned the 
5

source of the same relation. As it will be clear later, this notion is technically needed only for reinstatement violation.
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labels 𝜆1 and 𝜆2 is not tolerated for two incompatible elements 𝑠1 and 𝑠2. Since the simultaneous positiveness expressed by 𝑐′1 and 
𝑐′2 is not lesser that the one expressed by 𝑐1 and 𝑐2, then it must hold 𝑐′1⊡𝑐′2.

The second property requires at least one labelling to yield inconsistency for two elements related by intolerance. Otherwise, an 
empty relation would completely neglect the intolerance relation between elements of 𝑆 .

The third property requires each label to be attainable for 𝑠1 and 𝑠2 without necessarily generating inconsistencies, otherwise the 
role of the label would be too weak. For instance, if there was a class 𝑐1 such that ∄𝑐2 ∈ 𝐶 with 𝑐1⊟𝑐2, this would mean that a label 
of class 𝑐1 could not be assigned to any element which is the source of an intolerance relation without generating inconsistencies, 
implying that the class 𝑐1 would have a very limited applicability (actually it could not be used at all in most cases). Similarly, if 
∄𝑐3 ∈ 𝐶 such that 𝑐3⊟𝑐1, a label of class 𝑐1 could not be assigned to any element which is the target of an intolerance relation, 
implying again a very limited applicability of labels of class 𝑐1 .

Two additional intuitive properties of well-founded incompatibility relations can be derived. First, two maximally positive labels 
cannot be ascribed together to conflicting elements. Second, the maximally negative label is compatible with any other label, in 
particular, min(𝐶)⊟min(𝐶), max(𝐶)⊟min(𝐶) and min(𝐶)⊟max(𝐶).

Proposition 2.2. Given a 𝗌𝖺𝖼 𝐶 , let 𝗂𝗇𝖼 be a well-founded incompatibility relation on 𝐶 . It then holds that:

• max(𝐶)⊡max(𝐶)
• ∄𝑐 ∈ 𝐶 such that 𝑐⊡min(𝐶) or min(𝐶)⊡𝑐

Proof. As to the first property, since 𝗂𝗇𝖼 ≠ ∅ there are 𝑐1, 𝑐2 ∈ 𝐶 such that 𝑐1⊡𝑐2. Taking into account that 𝗂𝗇𝖼 is monotonic, it 
obviously holds that max(𝐶)⊡max(𝐶).

As to the second property, assume by contradiction that ∃𝑐 ∈ 𝐶 such that 𝑐⊡min(𝐶). By the monotonicity property and the 
definition of min(𝐶), ∀𝑐′ ∈ 𝐶 it holds that 𝑐⊡𝑐′, violating the third condition of Definition 2.7. The other condition can be proved in 
the same way. □

According to the above proposition, we can identify for any 𝗌𝖺𝖼 𝐶 the minimal well-founded incompatibility relation as inc𝐶 =
{(max(𝐶), max(𝐶))}.

Let us turn now to well-founded reinstatement violation relations.

Definition 2.8. Given a 𝗌𝖺𝖼 𝐶 , let 𝗋𝗏 be a reinstatement violation relation on 𝐶 . We say that 𝗋𝗏 is well-founded iff it satisfies the 
following properties:

• 𝗋𝗏 is dually monotonic,2 i.e., given 𝑐1, 𝑐2 ∈ 𝐶 such that 𝑐1⊡𝑐2, for every pair 𝑐′1, 𝑐
′
2 ∈ 𝐶 such that 𝑐′1 ≤ 𝑐1 and 𝑐′2 ≤ 𝑐2 it holds that 

𝑐′1⊡𝑐′2
• 𝗋𝗏 is non empty, i.e., 𝗋𝗏 ≠ ∅
• ∀𝑐1 ∈ 𝐶 , ∃𝑐2 ∈ 𝐶 such that 𝑐1⊟𝑐2 and ∃𝑐3 ∈ 𝐶 such that 𝑐3⊟𝑐1

In order to provide an explanation of these requirements, let us refer again to the simple case depicted in Fig. 2.

As to the first condition, we remark that reinstatement violation arises from a sort of ‘excess of cautiousness’ in assigning positive 
labels, i.e., a too much negative label is assigned to an element even in the absence of a positively assessed element linked by 
intolerance. Let us then consider the case where, in Fig. 2, 𝑐1⊡𝑐2. This situation can be interpreted in two equivalent ways:

1. The label 𝜆1 assigned to 𝑠1 is too much negative to justify the label 𝜆2 assigned to 𝑠2
2. The label 𝜆2 assigned to 𝑠2 is too much negative w.r.t. the ‘not so positive’ label 𝜆1 assigned to 𝑠1

Accordingly, if 𝑐′1 ≤ 𝑐1 (i.e., positiveness of 𝜆1 does not increase) and 𝑐′2 ≤ 𝑐2 (i.e., positiveness of 𝜆2 does not increase), then it must 
also hold 𝑐′1⊡𝑐′2.

The second condition, i.e., that 𝗋𝗏 is non empty, is required to avoid an overly skeptical assessment attitude such that assigning 
the most negative label to all elements is always allowed, independently of the labels of incompatible elements.

The third condition has an analogous rationale w.r.t. the analogous condition appearing in Definition 2.7.

Also in this case, two additional intuitive properties of well-founded reinstatement violation relations can be derived. First, two 
minimally positive labels cannot be ascribed together to conflicting elements.3 Second, the maximally positive label is compatible 
with any other label, in particular max(𝐶)⊟max(𝐶), max(𝐶)⊟min(𝐶) and min(𝐶)⊟max(𝐶).

Proposition 2.3. Given a 𝗌𝖺𝖼 𝐶 , let 𝗋𝗏 be a well-founded reinstatement violation relation on 𝐶 . It then holds that:

2 We use this term since the property is preserved for decreasing, rather than increasing values in 𝐶 .
6

3 This refers to the simple case of Fig. 2, while the general case is handled according to Definition 2.10.
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• min(𝐶)⊡min(𝐶)
• ∄𝑐 ∈ 𝐶 such that 𝑐⊡max(𝐶) or max(𝐶)⊡𝑐

Proof. As to the first property, since 𝗋𝗏 ≠ ∅ there are 𝑐1, 𝑐2 ∈ 𝐶 such that 𝑐1⊡𝑐2. Taking into account that 𝗂𝗇𝖼 is dually monotonic, it 
obviously holds that min(𝐶)⊡min(𝐶).

As to the second property, assume by contradiction that ∃𝑐 ∈ 𝐶 such that 𝑐⊡max(𝐶). By the dual monotonicity property and the 
definition of max(𝐶), ∀𝑐′ ∈ 𝐶 it holds that 𝑐⊡𝑐′, violating the third condition of Definition 2.8. The other condition can be proved 
in the same way. □

According to the above proposition, we can identify for any 𝗌𝖺𝖼 𝐶 the minimal well-founded reinstatement violation relation as 
rv𝐶 = {(min(𝐶), min(𝐶))}.

While we have considered above the particular case involving only a couple of elements of 𝑆 , in order to introduce our generalized 
notions of inconsistency and reinstatement violation we have to consider the general case of labellings of generic sets.

Let us start with defining when a labelling is inconsistent.

Definition 2.9. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 equipped with an incompatibility relation 𝗂𝗇𝖼, and 
a 𝐶 -classified 𝗌𝖺𝗅 Λ, a Λ-labelling 𝐿 of 𝑆 is 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent iff

∃𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 and 𝐿(𝑠1)⊡𝐿(𝑠2) (1)

Conversely, we say that a labelling is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent if it is not 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent, i.e.,

∀𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2, it holds that 𝐿(𝑠1)⊟𝐿(𝑠2) (2)

The above definition corresponds to the idea that consistency violation arises from an excess of simultaneous positivity between 
any couple of incompatible elements, i.e., given 𝑠1 ∈ 𝑆 a single 𝑠2 satisfying the 𝗂𝗇𝖼 relation is sufficient to yield inconsistency.

The following proposition is obvious and will not be proved.

Proposition 2.4. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 and a 𝐶 -classified 𝗌𝖺𝗅 Λ, consider two incompatibility 
relations 𝗂𝗇𝖼 and 𝗂𝗇𝖼’ such that 𝗂𝗇𝖼 ⊆ 𝗂𝗇𝖼′. Then, an 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent Λ-labelling 𝐿 of 𝑆 is also 𝗂𝗇𝗍-𝗂𝗇𝖼’-inconsistent, and an 𝗂𝗇𝗍-𝗂𝗇𝖼’-consistent 
Λ-labelling 𝐿 of 𝑆 is also 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent.

Example 2.5. With reference to our running example, an inconsistent labelling can be intuitively regarded as corresponding to a 
customer who ‘wants too much’ with respect to what is possible (or actually offered) in a travel. Assume the minimal well-founded 
incompatibility relation for our case, namely inc𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌)}. Given the intolerance relation 𝗂𝗇𝗍𝑡𝑟 previously introduced, we get 
that 𝐿1 is 𝗂𝗇𝗍𝑡𝑟 − inc𝐶3 − 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, since both 𝖫𝗎𝗑 and 𝖫𝗈𝗐, which are mutually intolerant, have a label of class 𝗉𝗈𝗌. 𝐿2 and 
𝐿3 are instead 𝗂𝗇𝗍𝑡𝑟 − inc𝐶3 − 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡. One may however consider a stronger notion of consistency, where a positive label on an 
element is compatible only with a negative label on an intolerant element: this would correspond to the incompatibility relation 
inc+

𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗉𝗈𝗌, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗉𝗈𝗌)}. By Proposition 2.4 (and as it can be obviously seen), 𝐿1 is also 𝗂𝗇𝗍𝑡𝑟 − inc+
𝐶3 − 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡. 

Moreover, 𝐿2 is 𝗂𝗇𝗍𝑡𝑟 − inc+
𝐶3 − 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡, since the mutually intolerant feature 𝖠𝖽𝗏 and 𝖫𝗎𝗑 have labels of the classes 𝗉𝗈𝗌 and 𝗆𝗂𝖽

respectively. Intuitively, under this stricter view, the labelling 𝐿2 corresponds to a customer who values adventure a lot, but is not 
available enough to renounce luxury.

Turning to reinstatement violation, duality w.r.t. inconsistency is reflected also in the counterpart of Definition 2.9. In particular, 
given 𝑠2 ∈ 𝑆 , reinstatement is violated if all the elements 𝑠1 that are intolerant w.r.t. 𝑠2 do not provide a sufficient reason (i.e., are not 
positive enough) to justify the ‘not so positive’ label assigned to 𝑠2 . Accordingly, a Λ-labelling 𝐿 of 𝑆 should violate reinstatement iff

∃𝑠2 ∶ ∀𝑠1 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 it holds that 𝐿(𝑠1)⊡𝐿(𝑠2) (3)

while it should satisfy reinstatement iff

∀𝑠2 ∈ 𝑆,∃𝑠1 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 and 𝐿(𝑠1)⊟𝐿(𝑠2) (4)

However, both conditions (3) and (4) are unsatisfactory for initial4 elements of 𝑆 , i.e., elements 𝑠2 of 𝑆 such that there are no 
elements 𝑠1 with 𝑠1 ⊙𝑠2. Such elements 𝑠2 trivially satisfy condition (3) and never satisfy condition (4), entailing that no labelling is 
able to satisfy reinstatement whenever there are initial elements in 𝑆 .

A suitable condition for initial elements is thus needed.

In this regard, a first option is to impose max(𝐶) as the unique possible label for initial elements, on the grounds that there are no 
reasons against the acceptance of initial elements. However, this option looks somehow rigid, since a unique label is prescribed for 
7

4 We borrow the terminology from abstract argumentation, where initial nodes are those without attackers.
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initial nodes, and, from a conceptual point of view, it looks strange that initial elements receive a special treatment which completely 
neglects the reinstatement violation relation.

Another option is to introduce a special relation for initial elements, which defines the set of their possible labels so that such a set 
can be tuned in the same way as for the reinstatement violation relation. While this solution would achieve the maximum flexibility, it 
is still characterized by the same conceptual problem concerning a special treatment for initial elements, which would be completely 
independent of how labels are selected for non-initial elements.

We are thus led to explore solutions where the set of possible labels for initial nodes is derived from the reinstatement violation 
relation. In this regard, the following two options for the allowed labels for initial elements can be considered:

1. {𝜆 ∈Λ ∣ min(𝐶)⊟𝐶Λ(𝜆)}
2. {𝜆 ∈Λ ∣ ∀𝑐 ∈ 𝐶, 𝑐⊟𝐶Λ(𝜆)}

Intuitively, according to the first option, initial elements are equated to non-initial elements where elements intolerant of them are 
all labelled with minimally positive labels. Accordingly, the labels that the reinstatement violation relation allows for initial elements 
are the same that are allowed for an element 𝑠2 such that there is a unique element 𝑠1 with 𝑠1 ⊙ 𝑠2, and the label assigned to 𝑠1 is 
associated to min(𝐶). In a sense, the absence of reasons against the acceptance of 𝑠2 is equivalent to a contrary reason with a minimal 
acceptance degree.

The second option allows for initial nodes only those labels that would be allowed by all of the labels of intolerant nodes. The 
underlying idea is that the absence of reasons against the acceptance of a node 𝑠2 , i.e., in case 𝑠2 is an initial element, must only 
prevent any label for 𝑠2 that would be prevented in case of presence of intolerant elements w.r.t. 𝑠2 , whatever the labels assigned to 
them.

Interestingly enough, the two options turn out to be equivalent if one adopts a well-founded reinstatement violation relation, as 
the following proposition shows.

Proposition 2.5. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 equipped with a well-founded reinstatement violation 
relation 𝗋𝗏, and a 𝐶 -classified 𝗌𝖺𝗅 Λ, it turns out that

{𝜆 ∈ Λ ∣ min(𝐶)⊟𝐶Λ(𝜆)} = {𝜆 ∈ Λ ∣ ∀𝑐 ∈ 𝐶, 𝑐⊟𝐶Λ(𝜆)}

Proof. Let us first prove the ⊆ relation. Let 𝜆 ∈ Λ be a label such that min(𝐶)⊟𝐶Λ(𝜆). By the definition of minimum, ∀𝑐 ∈ 𝐶, min(𝐶) ≤
𝑐. If by contradiction 𝑐⊡𝐶Λ(𝜆) then by dual monotonicity of 𝗋𝗏 it would be the case that min(𝐶)⊡𝐶Λ(𝜆), contradicting the hypothesis 
that min(𝐶)⊟𝐶Λ(𝜆).

As to the ⊇ relation, obviously any 𝜆 such that ∀𝑐 ∈ 𝐶, 𝑐⊟𝐶Λ(𝜆) satisfies as a particular case min(𝐶)⊟𝐶Λ(𝜆). □

According to this result, we introduce our generalized notion of reinstatement violation of a labelling as follows.

Definition 2.10. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 equipped with a reinstatement violation relation 
𝗋𝗏, and a 𝐶 -classified 𝗌𝖺𝗅 Λ, a Λ-labelling 𝐿 of 𝑆 is 𝗂𝗇𝗍-𝗋𝗏-uncompliant iff

∃𝑠2 ∈ 𝑆 ∶

{
min(𝐶)⊡𝐶Λ(𝐿(𝑠2)) if 𝑠2 is initial

∀𝑠1 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 it holds that 𝐿(𝑠1)⊡𝐿(𝑠2) otherwise
(5)

Conversely, we say that a labelling is 𝗂𝗇𝗍-𝗋𝗏-compliant if it is not 𝗂𝗇𝗍-𝗋𝗏-uncompliant, i.e.,

∀𝑠2 ∈ 𝑆

{
min(𝐶)⊟𝐶Λ(𝐿(𝑠2)) if 𝑠2 is initial

∃𝑠1 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 and 𝐿(𝑠1)⊟𝐿(𝑠2) otherwise
(6)

A corresponding result w.r.t. Proposition 2.4 holds.

Proposition 2.6. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 and a 𝐶 -classified 𝗌𝖺𝗅 Λ, consider two reinstatement 
violation relations 𝗋𝗏 and 𝗋𝗏′ such that 𝗋𝗏 ⊆ 𝗋𝗏′. Then, an 𝗂𝗇𝗍-𝗋𝗏-uncompliant Λ-labelling 𝐿 of 𝑆 is also 𝗂𝗇𝗍-𝗋𝗏′-uncompliant, and an 𝗂𝗇𝗍-𝗋𝗏′-
compliant Λ-labelling 𝐿 of 𝑆 is also 𝗂𝗇𝗍-𝗋𝗏-compliant.

Proof. If 𝐿 is 𝗂𝗇𝗍-𝗋𝗏-uncompliant, there is an argument 𝛼 which satisfies one of the two cases for 𝑠2 of condition (5) w.r.t. 𝗋𝗏. Since 
𝗋𝗏 ⊆ 𝗋𝗏′, obviously this case would be satisfied also adopting 𝗋𝗏′. The result concerning compliant labellings follows from the fact that 
a labelling is 𝗂𝗇𝗍-𝗋𝗏-compliant iff it is not 𝗂𝗇𝗍-𝗋𝗏-uncompliant. □

A final comment can be devoted to the constraints imposed by consistent labellings on the possible labels for initial elements. In 
8

particular, according to Definition 2.9 a labelling is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent if ∀𝑠2 ∈ 𝑆 the following condition holds:
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∀𝑠1 ∶ 𝑠1 ⊙ 𝑠2, 𝐿(𝑠1)⊟𝐿(𝑠2) (7)

If 𝑠2 is initial, then condition (7) is trivially satisfied, i.e., the possible labels for 𝑠2 are unconstrained. However, one may wonder 
whether a different outcome would be obtained by modifying Definition 2.9 to enforce a specific treatment for initial elements, 
similarly to 𝗂𝗇𝗍-𝗋𝗏-compliant labellings (see Definition 2.10).

Taking into account the intuition behind consistency, the following two options for the possible labels of initial elements can be 
considered:

1. {𝜆 ∈Λ ∣ min(𝐶)⊟𝐶Λ(𝜆)}
2. {𝜆 ∈Λ ∣ ∃𝑐 ∈ 𝐶 ∶ 𝑐⊟𝐶Λ(𝜆)}

Similar to the counterpart condition in the case of reinstatement, the first option equates initial elements to non-initial elements 
where intolerant elements w.r.t. them are all labelled with minimally positive labels.

The second option allows for initial nodes all those labels that would be allowed by at least one label assigned to an intolerant 
node. The underlying idea is that the absence of simultaneous positivity must leave the maximal freedom in choosing the labels for 
initial elements, thus any label that can be allowed in case there is an intolerant element must also be allowed for initial elements.

It is easy to see that, in the case of a well-founded incompatibility relation, both options do not enforce any constraint on the 
possible labels of initial elements. As to the first option, by Proposition 2.2, there is no 𝑐 ∈ 𝐶 such that min(𝐶)⊡𝑐, entailing that 
∀𝜆 ∈ Λ min(𝐶)⊟𝐶Λ(𝜆). Of course, the second option enforces a weaker constraint w.r.t. the first one, as it is evident by considering 
𝑐 =min(𝐶), thus, it must allow all labels in Λ as the first option.

Summing up, explicitly considering initial elements would not bring any modification to Definition 2.9, which thus concep-

tually corresponds to the dual counterpart of Definition 2.10. From a theoretical perspective, these considerations support the 
well-foundedness and generality of both definitions.

Example 2.6. With reference to our running example, an uncompliant labelling can be intuitively regarded as corresponding to a 
customer who is ‘too unopinionated’ about travel features. While proposing a travel solution to an inconsistent customer is problematic 
because of ‘too strong desiderata’, here the problem consists in ‘too weak desiderata’, leaving in a sense too open the space of options. 
Assume the minimal well-founded incompatibility relation for our case, namely rv𝐶3 = {(𝗇𝖾𝗀, 𝗇𝖾𝗀)}. Given the intolerance relation 
𝗂𝗇𝗍𝑡𝑟 previously introduced, we get that 𝐿1 and 𝐿2 are 𝗂𝗇𝗍𝑡𝑟 − rv𝐶3 − 𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡. In particular, in 𝐿1, the label of class 𝗇𝖾𝗀 assigned to 
𝖠𝖽𝗏 is justified by the label of class 𝗉𝗈𝗌 assigned to 𝖫𝗎𝗑, while in 𝐿2 the label of class 𝗇𝖾𝗀 assigned to 𝖫𝗈𝗐 is justified by the label of 
class 𝗆𝗂𝖽 assigned to 𝖫𝗎𝗑. Note also that, in both cases, the initial element 𝖤𝗑𝗈 is not assigned a label of class 𝗇𝖾𝗀, which would lead 
to an uncompliance according to Definition 2.10. 𝐿3 is instead 𝗂𝗇𝗍𝑡𝑟 − inc𝐶3 − 𝑢𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡, since 𝖫𝗎𝗑, 𝖫𝗈𝗐 and 𝖠𝖽𝗏, all have a label 
of class 𝗇𝖾𝗀, these very low assessments not being justified by higher assessments on their intolerant elements.

Also in this case one may consider some stronger requirement, for instance one may consider that an intermediate label is not 
enough to justify a negative label, which then requires a positive label on an intolerant element. This would correspond to the 
reinstatement violation relation rv+

𝐶3 = {(𝗇𝖾𝗀, 𝗇𝖾𝗀), (𝗆𝗂𝖽, 𝗇𝖾𝗀)}.

By Proposition 2.6, 𝐿3 is also 𝗂𝗇𝗍𝑡𝑟 − rv+
𝐶3 − 𝑢𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡. Moreover, 𝐿2 is 𝗂𝗇𝗍𝑡𝑟 − rv+

𝐶3 − 𝑢𝑛𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑡, since the label of class 𝗇𝖾𝗀
assigned to 𝖫𝗈𝗐 is no more justified by the label of class 𝗆𝗂𝖽 assigned to 𝖫𝗎𝗑. Intuitively, under this stricter view, the labelling 𝐿2
corresponds to a customer who unjustifiedly disregards saving money, while not being strongly interested in luxury.

As also shown in the examples, the generic definitions of inconsistency and reinstatement violation we have introduced are tunable

as their instances can be adjusted varying the incompatibility and reinstatement violation relations, and possibly also the underlying 
intolerance relation and 𝐶 -classification, giving rise to a family of alternative (in)consistency and reinstatement (violation) notions. 
As an illustration and confirmation of the flexibility and expressiveness of the proposed approach in a more formal setting, in the next 
section we show that different combinations of (in)consistency and reinstatement (violation) notions are able to capture different 
argumentation semantics in Dung’s argumentation frameworks.

3. Consistency and reinstatement properties in argumentation semantics

In abstract argumentation, a semantics [8] is a formal specification of a criterion to determine the possible outcomes of a situation 
of conflict, represented by a binary relation of attack (denoted as → in the following), defined on a set  of arguments. A set of 
arguments and the relevant attack relation are modelled by the traditional notion of argumentation framework [7].

Definition 3.1. An argumentation framework is a pair 𝐴𝐹 = (, →) where  is a set of arguments and →⊆ × is a binary relation 
of attack between them. Given an argument 𝛼 ∈, we denote as 𝛼− the set {𝛽 ∈ ∣ (𝛽, 𝛼) ∈→}. An argument 𝛼 such that 𝛼− = ∅ is 
called initial.

In the extension-based approach to argumentation semantics, the conflict outcomes are expressed as sets of arguments called 
extensions and, in this context, two somewhat dual notions corresponding to those introduced in the paper have been exploited in 
the relevant definitions. On the one hand, a basic consistency notion called conflict-freeness has been traditionally considered: a set 
9

of arguments is conflict-free if it does not include any pair of arguments 𝛼, 𝛽 such that 𝛼 ∈ 𝛽−. On the other hand, the reinstatement 
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Fig. 3. An example of argumentation framework. Arrows indicate attacks.

criterion, as well as some of its variants, has been made explicit in [10]: a semantics satisfies this criterion if any extension includes 
all those arguments whose attackers are, in turn, attacked by the extension.

In this paper, we consider the labelling-based approach to argumentation semantics. In particular, the outcomes are expressed as 
argument labellings instead of extensions, i.e., as assignments of labels, taken from a given set, to the set of arguments . Using the set 
of three labels ΛIOU, a correspondence can be drawn between extensions and labellings (the reader can refer to [8] for more details), 
while, in general, the labelling-based approach is more expressive than the extension-based approach, since it can in principle adopt 
any set of labels (e.g. a set of four labels as in [13] or the [0, 1] real interval as in several approaches to gradual argumentation 
semantics [16,17]) thus yielding assessments which cannot be expressed in terms of extensions.

Combining the generalized notions of consistency and reinstatement with three-valued labellings enables us to identify correspon-

dences between different instances of our generalized notions and different semantics. In particular, given an abstract argumentation 
framework, we assume that the intolerance relation coincides with the attack relation, i.e., 𝛼 ⊙ 𝛽 iff 𝛼 ∈ 𝛽−, and use the classifi-

cation 𝐶3
ΛIOU

introduced in Section 2. Then, an analysis of labelling-based semantics in this perspective can be developed, as we 
do in the following, where we review the definitions of some fundamental labelling-based semantics [8], showing that they can be 
expressed as combinations of specific instances of generalized consistency and reinstatement properties. Some illustrative examples, 
concerning the argumentation framework shown in Fig. 3, are provided for the benefit of readers not already familiar with abstract 
argumentation.

The simplest semantics notion is conflict-freeness, recalled in Definition 3.2.

Definition 3.2. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). 𝐿 is conflict-free iff for each 𝛼 ∈ it holds that:

1. if 𝐿(𝛼) = 𝚒𝚗 then ∄𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗
2. if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗

Example 3.1. With the reference to the argumentation framework in Fig. 3, given the constraint in item 1 of Definition 3.2, in a 
conflict-free labelling the label 𝚒𝚗 can be assigned to the arguments in the following sets: ∅, {𝛼}, {𝛽}, {𝛾}, {𝛿}, {𝛼, 𝛾}, {𝛼, 𝛿}, {𝛽, 𝛿}. 
In correspondence of each of the above listed sets of arguments labelled 𝚒𝚗, one or more conflict-free labellings can be identified by 
assigning the label 𝚞𝚗𝚍 to the arguments not attacked by arguments labelled 𝚒𝚗, and assigning the label 𝚞𝚗𝚍 or the label 𝚘𝚞𝚝 to the ar-

guments which are attacked by arguments labelled 𝚒𝚗. For instance, the only conflict-free labelling corresponding to the empty set of 
𝚒𝚗-labelled arguments is 𝐿1 = {(𝛼, 𝚞𝚗𝚍), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚞𝚗𝚍)}. There are instead two conflict-free labellings corresponding to the 
set of 𝚒𝚗-labelled arguments {𝛽, 𝛿}, namely 𝐿2 = {(𝛼, 𝚞𝚗𝚍), (𝛽, 𝚒𝚗), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚒𝚗)} and 𝐿3 = {(𝛼, 𝚞𝚗𝚍), (𝛽, 𝚒𝚗), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)}, and 
four conflict-free labellings corresponding to the set of 𝚒𝚗-labelled arguments {𝛼, 𝛿}, namely 𝐿4 = {(𝛼, 𝚒𝚗), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚒𝚗)}, 
𝐿5 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚒𝚗)}, 𝐿6 = {(𝛼, 𝚒𝚗), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)}, and 𝐿7 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)}. Continu-

ing the enumeration it can be seen that in total the argumentation framework in Fig. 3 admits 19 conflict-free labellings.

Item 1 in Definition 3.2 corresponds precisely to the weakest form of consistency, i.e., to the incompatibility relation inc𝐶3 =
{(𝗉𝗈𝗌, 𝗉𝗈𝗌)}. The second item represents a requirement for assigning to an argument the least positive label, and corresponds to 
reinstatement when the following reinstatement violation relation is adopted: 𝗋𝗏𝑐𝑓

𝐶3 = {(𝗇𝖾𝗀, 𝗇𝖾𝗀), (𝗆𝗂𝖽, 𝗇𝖾𝗀)}.

Proposition 3.1. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). Then, 𝐿 is →-𝗋𝗏𝑐𝑓
𝐶3 -compliant iff for each 𝛼 ∈ it 

holds that if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗.

Proof. Let 𝐿 be →-𝗋𝗏𝑐𝑓
𝐶3 -compliant and assume by contradiction that there is an argument 𝛼 ∈ such that 𝐿(𝛼) = 𝚘𝚞𝚝 and ∀𝛽 ∈ 𝛼−

𝐿(𝛽) ≠ 𝚒𝚗. If 𝛼 is initial, according to Definition 2.10 it must be the case that min(𝐶)⊟𝐶Λ(𝐿(𝛼)), i.e., taking into account the definition 
of 𝗋𝗏𝑐𝑓

𝐶3 it holds that 𝐶Λ(𝐿(𝛼)) ∈ {𝗆𝗂𝖽, 𝗉𝗈𝗌}, which contradicts 𝐿(𝛼) = 𝚘𝚞𝚝. If 𝛼 is not initial, according to Definition 2.10 it holds that 
∃𝛽 ∈ 𝑆 ∶ 𝛽 ⊙ 𝛼 (i.e., 𝛽 ∈ 𝛼−) and 𝐿(𝛽)⊟𝐿(𝛼), i.e., taking again into account the definition of 𝗋𝗏𝑐𝑓

𝐶3 and the fact that 𝐿(𝛼) = 𝚘𝚞𝚝 we 
have that ∃𝛽 ∈ 𝑆 ∶ 𝛽 ∈ 𝛼− and 𝐿(𝛽) ∈ {𝚒𝚗}, contradicting the initial assumption that ∀𝛽 ∈ 𝛼− 𝐿(𝛽) ≠ 𝚒𝚗.

As to the reverse direction, assume that for each 𝛼 ∈ if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗, and assume by contradiction that 
𝐿 is →-𝗋𝗏𝑐𝑓

𝐶3 -uncompliant. According to Definition 2.10, at least one of the following two cases holds.

1. There is 𝛼 ∈ such that 𝛼 is initial and min(𝐶)⊡𝐶Λ(𝐿(𝛼)). Taking into account the definition of 𝗋𝗏𝑐𝑓
𝐶3 , this entails 𝐿(𝛼) = 𝚘𝚞𝚝. 

By the initial assumption ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗, contradicting the fact that 𝛼 is initial.

2. There is a non initial argument 𝛼 ∈  such that ∀𝛽 ∈ 𝑆 such that 𝛽 ∈ 𝛼− it holds that 𝐿(𝛽)⊡𝐿(𝛼). Taking into account the 
definition of 𝗋𝗏𝑐𝑓

𝐶3 , it must be the case that 𝐿(𝛼) = 𝚘𝚞𝚝 and ∀𝛽 ∈ 𝑆 such that 𝛽 ∈ 𝛼−, 𝐿(𝛽) ∈ {𝚘𝚞𝚝, 𝚞𝚗𝚍}. This contradicts the 
10

assumption that ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗. □
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It is then immediate to characterize conflict-free labellings in terms of our generalized notions.

Proposition 3.2. The set of conflict-free labellings coincides with the set of labellings which are →-inc𝐶3 -consistent and →-𝗋𝗏𝑐𝑓
𝐶3 -compliant.

Proof. The proof is immediate taking into account the correspondence between Item 1 in Definition 3.2 and consistency under inc𝐶3 , 
as well as correspondence between Item 2 and reinstatement compliance under 𝗋𝗏𝑐𝑓

𝐶3 ensured by Proposition 3.1. □

Admissibility of a set of arguments was introduced in [7] with reference to the notion of defense, i.e., the ability of a conflict-free 
set to defend its members by counterattacking their attackers. The labelling-based counterpart of this idea is given in Definition 3.3.

Definition 3.3. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). 𝐿 is admissible iff for each 𝛼 ∈ it holds that:

1. if 𝐿(𝛼) = 𝚒𝚗 then ∀𝛽 ∈ 𝛼−, 𝐿(𝛽) = 𝚘𝚞𝚝
2. if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗

Item 1 in Definition 3.3 is a strengthening of item 1 of Definition 3.2, while item 2 is the same in both Definition 3.2 and 3.3. It 
follows that admissible labellings are a (tipycally strict) subset of conflict-free labellings.

It can be observed that the labelling assigning 𝚞𝚗𝚍 to every argument, besides being conflict-free, is admissible in any argumen-

tation framework.

Example 3.2. Focusing on the example of Fig. 3, it can be noted that the argument 𝛽 cannot be assigned the label 𝚒𝚗 in any 
admissible labelling, since its attacker 𝛼 cannot be assigned the label 𝚘𝚞𝚝. Moreover, it can be noted that the argument 𝛾 can be 
assigned the label 𝚒𝚗 only if both its attackers 𝛽 and 𝛿 are labelled 𝚘𝚞𝚝, with 𝛽 labelled 𝚘𝚞𝚝 implying in turn that 𝛼 is labelled 
𝚒𝚗. It follows that in an admissible labelling the label 𝚒𝚗 can be assigned to the arguments in the following sets: ∅, {𝛼}, {𝛿}, 
{𝛼, 𝛾}, {𝛼, 𝛿}. In correspondence of each of the above listed sets of arguments labelled 𝚒𝚗, one or more admissible labellings can 
be identified by assigning first the label 𝚘𝚞𝚝 to the arguments attacking arguments labelled 𝚒𝚗, then assigning the label 𝚞𝚗𝚍 to 
arguments not attacked by arguments labelled 𝚒𝚗, and finally assigning the label 𝚞𝚗𝚍 or the label 𝚘𝚞𝚝 to the remaining arguments 
which are attacked by arguments labelled 𝚒𝚗. For instance, there are two admissible labellings corresponding to the case where 
only 𝛼 is labelled 𝚒𝚗, namely 𝐿1 = {(𝛼, 𝚒𝚗), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚞𝚗𝚍)} and 𝐿2 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚞𝚗𝚍)} and there are two 
admissible labellings corresponding to the case where 𝛼 and 𝛿 are labelled 𝚒𝚗, namely 𝐿3 = {(𝛼, 𝚒𝚗), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)} and 
𝐿4 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)}. Continuing the enumeration it can be seen that in total the argumentation framework in Fig. 3

has 7 admissible labellings.

Interestingly, the strengthening encompassed by Definition 3.3 corresponds to the choice of a stronger form of consistency: having 
an attacker labelled 𝗎𝗇𝖽 is forbidden for an argument labelled 𝗂𝗇, while having an attacker labelled 𝗂𝗇 is allowed for an argument 
labelled 𝗎𝗇𝖽. This coincides with adopting the following asymmetric incompatibility relation 𝗂𝗇𝖼𝑎

𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗆𝗂𝖽, 𝗉𝗈𝗌)}.

Proposition 3.3. The set of admissible labellings coincides with the set of labellings which are →-𝗂𝗇𝖼𝑎
𝐶3 -consistent and →-𝗋𝗏𝑐𝑓

𝐶3 -compliant.

Proof. We show below that admissible labellings correspond to the set of conflict-free labellings that are →-𝗂𝗇𝖼𝑎
𝐶3 -consistent. Then 

the conclusion easily follows from Proposition 3.2.

For a labelling 𝐿 let us first assume that 𝐿 is admissible. Then 𝐿 is conflict-free and by item 1 of Definition 3.3 ∄𝛼, 𝛽 ∈ such 
that 𝛽 ∈ 𝛼− (i.e., 𝛽 ⊙ 𝛼) and (𝐿(𝛽), 𝐿(𝛼)) ∈ 𝗂𝗇𝖼𝑎

𝐶3 (i.e., 𝐿(𝛽)⊡𝐿(𝛼)). Hence 𝐿 is →-𝗂𝗇𝖼𝑎
𝐶3 -consistent. Let now assume 𝐿 is conflict-free 

and →-𝗂𝗇𝖼𝑎
𝐶3 -consistent. To complete the proof we have to show that item 1 of Definition 3.3 holds: assume by contradiction that 

∃𝛼 such that 𝐿(𝛼) = 𝚒𝚗 and ∃𝛽 ∈ 𝛼− ∶ 𝐿(𝛽) ≠ 𝚘𝚞𝚝. It follows that (𝐿(𝛽), 𝐿(𝛼)) ∈ 𝗂𝗇𝖼𝑎
𝐶3 which contradicts the hypothesis that 𝐿 is 

→-𝗂𝗇𝖼𝑎
𝐶3 -consistent. □

Completeness of a set of arguments was introduced in [7] and is based on the idea that if an argument is defended by an ad-

missible set of arguments, it should be accepted together with its defenders. The labelling-based counterpart of this idea is given in 
Definition 3.4.

Definition 3.4. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). 𝐿 is complete if it is admissible and for each 𝛼 ∈
it holds that if 𝐿(𝛼) = 𝚞𝚗𝚍 then ∄𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗 and ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚞𝚗𝚍.

Example 3.3. Complete labellings are in turn a (typically strict) subset of admissible labellings. First of all, differently from the previ-

ous ones, Definition 3.4 implies that unattacked arguments are labelled 𝚒𝚗 (the label 𝚞𝚗𝚍 being no more possible since it requires the 
existence of an attacker). With reference to the example of Fig. 3, 𝛼 must be labelled 𝚒𝚗 in any complete labelling. Moreover, arguments 
11

attacked by an argument labelled 𝚒𝚗 must now be labelled 𝚘𝚞𝚝 (the label 𝚞𝚗𝚍 being excluded by the last condition in Definition 3.4). 
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In the example, 𝛽 must be labelled 𝚘𝚞𝚝. As to the arguments 𝛾 and 𝛿 it can be seen that, given their mutual attack relation, they 
can be both labelled 𝚞𝚗𝚍 or one 𝚒𝚗 and the other 𝚘𝚞𝚝. In total, the argumentation framework in Fig. 3 admits 3 complete labellings: 
𝐿1 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚞𝚗𝚍)}, 𝐿2 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚒𝚗), (𝛿, 𝚘𝚞𝚝)}, and 𝐿3 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗)}.

In words, a complete labelling is an admissible labelling with the additional requirement that an argument that is labelled 𝚞𝚗𝚍 must 
have an 𝚞𝚗𝚍-labelled attacker and no 𝚒𝚗-labelled attackers. In particular, the last condition can be enforced by further strengthening 
the notion of consistency by means of the incompatibility relation 𝗂𝗇𝖼𝑐

𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗉𝗈𝗌, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗉𝗈𝗌)}, while the first condition 
is verified if the following reinstatement property is enforced.

Definition 3.5. A labelling 𝐿 satisfies the reinstatement property if ∀𝛼 ∈ it holds that if ∀𝛽 ∈ 𝛼− 𝐿(𝛽) = 𝚘𝚞𝚝 then 𝐿(𝛼) = 𝚒𝚗.

The following proposition shows that the reinstatement property can be captured by the reinstatement violation relation 𝗋𝗏𝑐
𝐶3 =

{(𝗇𝖾𝗀, 𝗇𝖾𝗀), (𝗇𝖾𝗀, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗇𝖾𝗀)}.

Proposition 3.4. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). Then, 𝐿 is →-𝗋𝗏𝑐
𝐶3 -compliant iff it satisfies the 

reinstatement property and for each 𝛼 ∈ it holds that if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗.

Proof. Assume that 𝐿 is →-𝗋𝗏𝑐
𝐶3 -compliant. By Proposition 2.6, 𝐿 is →-𝗋𝗏𝑐𝑓

𝐶3 -compliant, and by Proposition 3.1 the second condition 
of the thesis holds. To prove the reinstatement property, let us consider an argument 𝛼 ∈ such that ∀𝛽 ∈ 𝛼−, 𝐿(𝛽) = 𝚘𝚞𝚝, and let us 
show that 𝐿(𝛼) = 𝚒𝚗. If 𝛼 is initial, by Definition 2.10 it must be the case that min(𝐶)⊟𝐶Λ(𝐿(𝛼)), i.e., taking into account the definition 
of 𝗋𝗏𝑐

𝐶3 we have that 𝐶Λ(𝐿(𝛼)) = 𝗉𝗈𝗌, which holds iff 𝐿(𝛼) = 𝚒𝚗. If 𝛼 is non initial, by Definition 2.10 there is an argument 𝛽 ∈ 𝛼−

such that 𝐿(𝛽)⊟𝐿(𝛼). Since by the hypothesis 𝐿(𝛽) = 𝚘𝚞𝚝, according to the definition of 𝗋𝗏𝑐
𝐶3 it must be the case that 𝐿(𝛼) = 𝚒𝚗.

As to the reverse direction of the proof, assume that 𝐿 satisfies the reinstatement property and the second condition of the 
hypothesis, and let us prove that 𝐿 is →-𝗋𝗏𝑐

𝐶3 -compliant. According to Definition 2.10, we can consider an argument 𝛼 and distinguish 
two cases for it. If 𝛼 is initial, by the reinstatement property 𝐿(𝛼) = 𝚒𝚗, thus 𝐶Λ(𝐿(𝛼)) = 𝗉𝗈𝗌 which satisfies the required condition 
min(𝐶)⊟𝐶Λ(𝐿(𝛼)). If 𝛼 is not initial, referring to Definition 2.10 assume by contradiction that there is no 𝛽 ∈ 𝛼− such that 𝐿(𝛽)⊟𝐿(𝛼). 
This means that ∀𝛽 ∈ 𝛼−, 𝐿(𝛽)⊡𝐿(𝛼), i.e., (𝐿(𝛽), 𝐿(𝛼)) ∈ {(𝚘𝚞𝚝, 𝚘𝚞𝚝), (𝚘𝚞𝚝, 𝚞𝚗𝚍), (𝚞𝚗𝚍, 𝚘𝚞𝚝)}. According to the second condition of 
the hypothesis if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶ 𝐿(𝛽) = 𝚒𝚗, which entails that 𝐿(𝛼) ≠ 𝚘𝚞𝚝. Then 𝐿(𝛼) = 𝚞𝚗𝚍 and ∀𝛽 ∈ 𝛼− 𝐿(𝛽) = 𝚘𝚞𝚝, 
contradicting the reinstatement property. □

We can now characterize complete labellings in terms of generalized consistency and reinstatement.

Proposition 3.5. The set of complete labellings coincides with the set of admissible labellings which are →-𝗂𝗇𝖼𝑐
𝐶3 -consistent and satisfy the 

reinstatement property.

Proof. For a labelling 𝐿 let us first assume that 𝐿 is complete, hence admissible. From Proposition 3.3 we have that ∄𝛼, 𝛽 such 
that 𝛽 ∈ 𝛼− and (𝐿(𝛽), 𝐿(𝛼)) ∈ {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗆𝗂𝖽, 𝗉𝗈𝗌)}. From Definition 3.4 we have also that if 𝐿(𝛼) = 𝚞𝚗𝚍 then ∄𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗, 
i.e., ∄𝛼, 𝛽 such that 𝛽 ∈ 𝛼− and (𝐿(𝛽), 𝐿(𝛼)) ∈ {(𝗉𝗈𝗌, 𝗆𝗂𝖽)}. It follows that 𝐿 is →-𝗂𝗇𝖼𝑐

𝐶3 -consistent. Moreover, it is well known that 
complete labellings satisfy the reinstatement property [8].

Let us now assume 𝐿 is admissible, →-𝗂𝗇𝖼𝑐
𝐶3 -consistent and satisfies the reinstatement property. Given an argument 𝛼 such that 

𝐿(𝛼) = 𝚞𝚗𝚍 it follows (from consistency) that ∄𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚒𝚗 and (from the reinstatement property) that ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) ≠ 𝚘𝚞𝚝, 
hence ∃𝛽 ∈ 𝛼− ∶𝐿(𝛽) = 𝚞𝚗𝚍 and 𝐿 is a complete labelling. □

Proposition 3.6. The set of complete labellings coincides with the set of labellings which are →-𝗂𝗇𝖼𝑐
𝐶3 -consistent and →-𝗋𝗏𝑐

𝐶3 -compliant.

Proof. It is shown in Proposition 3.5 that complete labellings coincide with admissible labellings that are →-𝗂𝗇𝖼𝑐
𝐶3 -consistent and 

satisfy the reinstatement property. Then, according to the definition of admissible labellings if a labelling is complete it satisfies the 
condition that if 𝐿(𝛼) = 𝚘𝚞𝚝 then ∃𝛽 ∈ 𝛼− ∶ 𝐿(𝛽) = 𝚒𝚗, entailing by Proposition 3.4 that it is →-𝗋𝗏𝑐

𝐶3 -compliant. Conversely, if a 
labelling is →-𝗂𝗇𝖼𝑐

𝐶3 -consistent and →-𝗋𝗏𝑐
𝐶3 -compliant then by Proposition 2.4 and Proposition 2.6 it is also →-𝗂𝗇𝖼𝑎

𝐶3 -consistent and 
→-𝗋𝗏𝑐𝑓

𝐶3 -compliant, and thus admissible by Proposition 3.3. Moreover, by Proposition 3.4 it satisfies the reinstatement property. As a 
consequence, taking into account the aforementioned result of Proposition 3.5 the labelling is complete. □

The notion of a stable set of arguments can be characterized in several ways, its key feature being that no room is left for 
undecidedness (an argument is either accepted or attacked by an accepted argument) as indicated by Definition 3.6.
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Definition 3.6. Let 𝐿 be a labelling of an argumentation framework 𝐴𝐹 = (, →). 𝐿 is stable if it is complete and ∄𝛼 ∈ ∶𝐿(𝛼) = 𝚞𝚗𝚍.
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Fig. 4. The incompatibility and reinstatement violation relations introduced in Section 3.

Example 3.4. Of the three complete labellings listed in Example 3.3 clearly 𝐿2 and 𝐿3 are stable, while 𝐿1 is not, having some 
arguments labelled 𝚞𝚗𝚍.

This constraint can be put in correspondence with the adoption of the strongest notion of consistency, namely with the choice of 
the incompatibility relation 𝗂𝗇𝖼𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗉𝗈𝗌, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗉𝗈𝗌), (𝗆𝗂𝖽, 𝗆𝗂𝖽)}.

Proposition 3.7. The set of stable labellings coincides with the set of labellings that are →-𝗂𝗇𝖼𝐶3 -consistent and →-𝗋𝗏𝑐
𝐶3 -compliant.

Proof. We show below that stable labellings coincide with complete labellings which are →-𝗂𝗇𝖼𝐶3 -consistent. Then the conclusion 
follows from Proposition 3.6.

For a labelling 𝐿 let us first assume that 𝐿 is stable. By Definition 3.6, 𝐿 is complete. Moroever, by the same definition no argument 
is labelled 𝚞𝚗𝚍 hence ∄𝛼, 𝛽 such that 𝛽 ∈ 𝛼− and (𝐿(𝛽), 𝐿(𝛼)) ∈ {(𝗉𝗈𝗌, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗉𝗈𝗌), (𝗆𝗂𝖽, 𝗆𝗂𝖽)} and from conflict-freeness we have 
also that ∄𝛼, 𝛽 such that 𝛽 ∈ 𝛼− and (𝐿(𝛽), 𝐿(𝛼)) = (𝗉𝗈𝗌, 𝗉𝗈𝗌). Therefore 𝐿 is →-𝗂𝗇𝖼𝐶3 -consistent.

Assume now that 𝐿 is complete and →-𝗂𝗇𝖼𝐶3 -consistent and suppose by contradiction that ∃𝛼 such that 𝐿(𝛼) = 𝚞𝚗𝚍. It follows 
that 𝛼− ≠ ∅, otherwise by the reinstatement property it would hold that 𝐿(𝛼) = 𝚒𝚗. For every 𝛽 ∈ 𝛼− we have that 𝐿(𝛽) ∉ {𝚒𝚗, 𝚞𝚗𝚍}
otherwise 𝐿 would not be →-𝗂𝗇𝖼𝐶3 -consistent. But then ∀𝛽 ∈ 𝛼− we get 𝐿(𝛽) = 𝚘𝚞𝚝 which, by the reinstatement property, contradicts 
𝐿(𝛼) = 𝚞𝚗𝚍. □

The incompatibility and reinstatement violation relations introduced in this section are depicted in Fig. 4 with reference to the 
Hasse diagram of the elements of 𝐶3 ×𝐶3. In particular, in the diagram the total order in 𝐶3 is extended to a partial order in 𝐶3 ×𝐶3

by considering (𝑐1, 𝑐2) ≤ (𝑐′1, 𝑐
′
2) iff 𝑐1 ≤ 𝑐′1 and 𝑐2 ≤ 𝑐′2. It is easy to check that each incompatibility (reinstatement violation) relation 

satisfies the conditions of Definition 2.7 (Definition 2.8), i.e., all relations are well-founded.

To summarize, conflict-free labellings can be characterized in terms of generalized consistency and reinstatement, admissible 
labellings can be characterized in terms of strengthening consistency with respect to conflict-freeness without resorting to the tradi-

tional notion of defense, while characterizations of complete and stable labellings are achieved by further strengthening generalized 
consistency and reinstatement.

To complete the picture, we recall that the traditional grounded and preferred semantics [7] as well as the semi-stable semantics [9]

correspond to applying minimality or maximality constraints to the set of the outcomes of other semantics. Hence, our characterization 
also carries over to these semantics by applying the same global constraints. In particular, as shown in [9], the (provably unique) 
grounded labelling corresponds to the complete labelling where the set of arguments labelled 𝚒𝚗 is minimal with respect to set 
inclusion, while the preferred labellings correspond to the complete labellings where the set of arguments labelled 𝚒𝚗 is maximal, 
and the semi-stable labellings to the complete labellings where the set of arguments labelled 𝚞𝚗𝚍 is minimal.

In the next section, we move beyond the evaluation of acceptability of arguments based on argumentation semantics and consider 
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further evaluations that can be derived from it and raise the issue of preserving consistency across the derivation.
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4. Consistency and reinstatement preservation in labelling derivation mechanisms

The production of a set of labellings, in general, is just the first step of a reasoning process, where the set of labellings is used as 
the starting point for the derivation of further evaluations.

In formal argumentation, the outcomes prescribed by argumentation semantics are typically used as a basis for subsequent eval-

uations, in particular concerning the justification status of arguments.

It is then interesting to consider whether and how the consistency and reinstatement properties of the original evaluation are 
preserved in the derived evaluation and the requirements that can be posed on the derivation mechanism to ensure this preservation.

We focus here on what we call pure synthesis labelling derivation, namely a mechanism where a labelling of a set 𝑆 is generated 
from a set of labellings of the same set 𝑆 , deriving the label of each element from the labels assigned to the same element by the 
original labellings.

As an instance of this general pattern, we refer to the evaluation of the argument justification status according to a given semantics, 
which is derived from the set of argument extensions/labellings prescribed by the same semantics.

The simplest notion of argument justification, which we will use as a running example, is based on three possible states.

Definition 4.1. Given a set  of ΛIOU-labellings of a set of arguments , an argument 𝛼 ∈ is:

• skeptically justified (shortly, 𝖲𝗄𝖩) iff ∀𝐿 ∈  𝐿(𝛼) = 𝚒𝚗;

• credulously justified (𝖢𝗋𝖩) iff it is not skeptically justified5 and ∃𝐿 ∈ ∶𝐿(𝛼) = 𝚒𝚗;

• not justified (𝖭𝗈𝖩) iff ∄𝐿 ∈ ∶𝐿(𝛼) = 𝚒𝚗

Example 4.1. Considering the set of complete labellings 𝑐 = {𝐿1, 𝐿2, 𝐿3} introduced in Example 3.3, argument 𝛼 is skeptically 
justified, argument 𝛽 is not justified, arguments 𝛾 and 𝛿 are credulously justified.

Considering a 𝗌𝖺𝗅 ΛAJ = {𝖲𝗄𝖩, 𝖢𝗋𝖩, 𝖭𝗈𝖩}, the evaluation of argument justification can be modelled as the generation of a ΛAJ-

labelling from a set of ΛIOU-labellings. Concerning ΛAJ it is intuitive to assume the classification 𝐶3
ΛAJ

= {(𝖲𝗄𝖩, 𝗉𝗈𝗌), (𝖭𝗈𝖩, 𝗇𝖾𝗀),
(𝖢𝗋𝖩, 𝗆𝗂𝖽)}.

Example 4.2. The argument justification labelling corresponding to Example 3.3 is (𝛼, 𝖲𝗄𝖩), (𝛽, 𝖭𝗈𝖩), (𝛾, 𝖢𝗋𝖩), (𝛿, 𝖢𝗋𝖩).

At a general level, pure synthesis labelling derivations, like the one of argument justification, can be formalized through a simple 
synthesis function.

Definition 4.2. Given two 𝗌𝖺𝗅𝗌 Λ1 and Λ2, a simple synthesis function (𝗌𝗌𝖿 ) from Λ1 to Λ2 is a mapping 𝗌𝗒𝗇 ∶ 2Λ1 ⧵ {∅} →Λ2.

The idea is that, given a set of Λ1-labellings of a set 𝑆 , a Λ2-labelling of 𝑆 can be derived by applying a 𝗌𝗌𝖿 to the set of labels 
relevant to each element of 𝑆 .

Definition 4.3. Let 𝑆 be a set, Λ1 and Λ2 two 𝗌𝖺𝗅𝗌, 𝗌𝗒𝗇 a 𝗌𝗌𝖿 from Λ1 to Λ2, and 1 a non-empty set of Λ1-labellings of 𝑆 . The 
Λ2-labelling derived from 1 through 𝗌𝗒𝗇, denoted as 𝐷𝐿

𝗌𝗒𝗇
1

, is defined, for every 𝑠 ∈ 𝑆 as:

𝐷𝐿
𝗌𝗒𝗇
1

(𝑠) = 𝗌𝗒𝗇(↓
1(𝑠))

where for any 𝗌𝖺𝗅 Λ, any set  of Λ-labellings of 𝑆 and any 𝑠 ∈ 𝑆 , ↓(𝑠) ≜ {𝐿(𝑠) ∣𝐿 ∈ }.

Example 4.3. Referring again to Example 3.3, we have that ↓
𝑐 (𝛼) = {𝚒𝚗}, ↓

𝑐 (𝛽) = {𝚘𝚞𝚝}, ↓
𝑐 (𝛾) = ↓

𝑐 (𝛿) = {𝚒𝚗, 𝚞𝚗𝚍, 𝚘𝚞𝚝}. Then 
the idea is that the justification labelling presented in Example 4.2 (and, in general, any justification labelling) can be obtained by 
applying a proper 𝗌𝗌𝖿 𝗌𝗒𝗇 to the set of labels relevant to each argument. For instance since 𝛼 is skeptically justified, it must be the 
case that 𝗌𝗒𝗇({𝚒𝚗}) = 𝖲𝗄𝖩. A proper 𝗌𝗌𝖿 for argument justification is directly identifiable, as discussed next.

It is rather easy to see that the argument justification evaluation of Definition 4.1 corresponds to the use of a 𝗌𝗌𝖿 𝗌𝗒𝗇AJ from ΛIOU

to ΛAJ defined, for every Λ ⊆ΛIOU as follows:

• 𝗌𝗒𝗇AJ(Λ) = 𝖲𝗄𝖩 if Λ = {𝚒𝚗};

• 𝗌𝗒𝗇AJ(Λ) = 𝖢𝗋𝖩 if Λ ⊋ {𝚒𝚗};

• 𝗌𝗒𝗇AJ(Λ) = 𝖭𝗈𝖩 otherwise.

5 While traditionally credulous justification is regarded as including skeptical justification, we enforce this distinction so that argument justification can be properly 
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modelled as a labelling.
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Assuming that the labellings used for derivation satisfy some consistency and reinstatement properties, preserving these properties 
in the derived labelling appears desirable. We address this issue in a domain-independent way by defining general preservation 
properties for 𝗌𝗌𝖿s.

Definition 4.4. Let 𝐶 be a 𝗌𝖺𝖼 equipped with an incompatibility relation 𝗂𝗇𝖼, and Λ1 and Λ2 be two 𝐶 -classifed sets of labels. A 
𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is consistency preserving according to6 𝗂𝗇𝖼 iff for any set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍 and any 
non-empty 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent set7 1 of Λ1-labellings of 𝑆 it holds that the labelling 𝐷𝐿

𝗌𝗒𝗇
1

is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent.

Definition 4.5. Let 𝐶 be a 𝗌𝖺𝖼 equipped with a reinstatement violation relation 𝗋𝗏, and Λ1 and Λ2 be two 𝐶 -classifed sets of labels. 
A 𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is reinstatement preserving according to8 𝗋𝗏 iff for any set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍 and any 
non-empty 𝗂𝗇𝗍-𝗋𝗏-compliant set 1 of Λ1-labellings of 𝑆 it holds that the labelling 𝐷𝐿

𝗌𝗒𝗇
1

is 𝗂𝗇𝗍-𝗋𝗏-compliant.

This raises the issue of analyzing at a general level some properties of the 𝗌𝗌𝖿 that can ensure consistency and reinstatement 
preservation.

To start, we introduce a notion of well-behaved 𝗌𝗌𝖿 , which intuitively means that the function is monotonic with respect to an 
ordering of sets of labels, induced by the ordering on labels introduced in Definition 2.2, as specified in the next definition.

Definition 4.6. Let 𝐶 be a 𝗌𝖺𝖼, and Λ a 𝐶 -classifed 𝗌𝖺𝗅. Given Λ1, Λ2 ⊆ Λ, we say that Λ2 is at least as positive as Λ1, denoted as 
Λ1 ⪯𝑃 Λ2, iff ∀𝜆 ∈Λ1 ∃𝜆′ ∈ Λ2 such that 𝜆 ⪯Λ 𝜆′ and ∀𝜆′ ∈ Λ2 ∃𝜆 ∈Λ1 such that 𝜆 ⪯Λ 𝜆′.

The idea of the ⪯𝑃 relation is that every element of Λ1 can be mapped into an at least as positive element of Λ2 and, at the same 
time, every element of Λ2 can be mapped into a no more positive element of Λ1. To exemplify, for every non-empty Λ ⊆ ΛIOU it 
holds that Λ ⪯𝑃 {𝚒𝚗} and {𝚘𝚞𝚝} ⪯𝑃 Λ. Also {𝚒𝚗, 𝚘𝚞𝚝} ⪯𝑃 {𝚒𝚗, 𝚞𝚗𝚍, 𝚘𝚞𝚝} and {𝚒𝚗, 𝚞𝚗𝚍, 𝚘𝚞𝚝} ⪯𝑃 {𝚒𝚗, 𝚘𝚞𝚝} while {𝚒𝚗, 𝚘𝚞𝚝} 𝑃 {𝚞𝚗𝚍}
and {𝚞𝚗𝚍} 𝑃 {𝚒𝚗, 𝚘𝚞𝚝}.

It is easy to see that ⪯𝑃 is a preorder.

Proposition 4.1. For any 𝗌𝖺𝖼 𝐶 and 𝐶 -classifed 𝗌𝖺𝗅 Λ, the relation ⪯𝑃 is reflexive and transitive.

Proof. By Proposition 2.1, the relation ⪯Λ is reflexive and transitive. The conclusion then easily follows from Definition 4.6. □

We can now introduce the notion of well-behaved 𝗌𝗌𝖿 .

Definition 4.7. Given a 𝗌𝖺𝖼 𝐶 and two 𝐶 -classifed 𝗌𝖺𝗅𝗌 Λ1 and Λ2, a 𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is well-behaved iff for any non-empty 
Λ′
1, Λ

′
2 ⊆Λ1 such that Λ′

1 ⪯𝑃 Λ′
2, it holds that 𝗌𝗒𝗇(Λ′

1) ⪯ 𝗌𝗒𝗇(Λ′
2).

Using these basic concepts, we will investigate the problems of ensuring consistency and reinstatement preservation.

4.1. Characterising consistency preserving synthesis functions

Towards characterizing well-behaved and consistency preserving 𝗌𝗌𝖿 s, we assume that for every label 𝜆 ∈ Λ the set 𝑐𝑐(𝜆), which 
is non-empty by the third condition of Definition 2.7, includes a non-empty set of maximal elements with respect to the ⪯ relation, 
i.e., ∀𝜆 ∈ Λ the set {𝜆′ ∈ 𝑐𝑐(𝜆) ∣ ∄𝜆′′ ∈ 𝑐𝑐(𝜆) with 𝜆′ ≺ 𝜆′′} is non-empty. This is clearly true if Λ (and hence 𝑐𝑐(𝜆)) is finite, while it 
corresponds to a relatively mild requirement if Λ is infinite (and hence 𝑐𝑐(𝜆) can be infinite too). Investigating contexts where this 
assumption is not satisfied is left to future work.

As a first step, given a set of labels Λ1, we consider whether a set of labels Λ2 is a compatible dual of Λ1, with respect to an 
inconsistency relation. This means that, given an 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent set of labellings , if Λ1 = ↓(𝑠) for some element 𝑠, then it is 
possible that Λ2 =↓(𝑠′) for some 𝑠′ such that 𝑠 ⊙ 𝑠′.

Definition 4.8. Let 𝐶 be a 𝗌𝖺𝖼, Λ be a 𝐶 -classifed set of labels, and Λ1 ⊆Λ. Given an incompatibility relation 𝗂𝗇𝖼 on 𝐶 , we say that 
Λ2 ⊆ Λ is an 𝗂𝗇𝖼-compatible dual of Λ1, denoted as Λ2 ∈ 𝐶𝐶𝐷(Λ1), iff ∀𝜆 ∈ Λ1 ∃𝜆′ ∈ Λ2 such that 𝜆′ ∈ 𝑐𝑐(𝜆), and ∀𝜆′ ∈ Λ2 ∃𝜆 ∈ Λ1
such that 𝜆′ ∈ 𝑐𝑐(𝜆).

6 More precisely, consistency preservation should be defined w.r.t. a tuple (𝐶, 𝐶Λ1
, 𝐶Λ2

, 𝗂𝗇𝖼), since it also depends on how the labels of Λ1 and Λ2 are mapped on 
assessment classes. However, for ease of notation, we focus on the incompatibility relation 𝗂𝗇𝖼, since the mappings 𝐶Λ1

and 𝐶Λ2
are usually clear from the context.

7 With a little abuse of language we say that a set of labellings is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent if all its elements are 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent. We will say that a set is 𝗂𝗇𝗍-𝗋𝗏-compliant 
with the analogous meaning.
15

8 Similarly to the case of consistency preservation, reinstatement preservation should be defined w.r.t. (𝐶, 𝐶Λ1
, 𝐶Λ2

, 𝗋𝗏).
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Example 4.4. Let us consider ΛIOU and the incompatibility relation 𝗂𝗇𝖼𝑐
𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗉𝗈𝗌, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗉𝗈𝗌)}. Letting Λ1 = {𝚒𝚗, 𝚞𝚗𝚍}

we have that 𝑐𝑐(𝚒𝚗) = {𝚘𝚞𝚝} and 𝑐𝑐(𝚞𝚗𝚍) = {𝚞𝚗𝚍, 𝚘𝚞𝚝}. Hence 𝐶𝐶𝐷(Λ1) = {{𝚘𝚞𝚝}, {𝚞𝚗𝚍, 𝚘𝚞𝚝}}: in fact, 𝚘𝚞𝚝 must be included in every 
element of 𝐶𝐶𝐷(Λ1) since it is the only compatible label with 𝚒𝚗, while both 𝚘𝚞𝚝 and 𝚞𝚗𝚍 are compatible with 𝚞𝚗𝚍. Considering the 
weaker incompatibility relation 𝗂𝗇𝖼𝑎

𝐶3 = {(𝗉𝗈𝗌, 𝗉𝗈𝗌), (𝗆𝗂𝖽, 𝗉𝗈𝗌)} we would have 𝑐𝑐(𝚒𝚗) = 𝑐𝑐(𝚞𝚗𝚍) = {𝚞𝚗𝚍, 𝚘𝚞𝚝}, and hence 𝐶𝐶𝐷(Λ1) =
{{𝚘𝚞𝚝}, {𝚞𝚗𝚍}, {𝚞𝚗𝚍, 𝚘𝚞𝚝}}.

The following proposition confirms the intended meaning of Definition 4.8.

Proposition 4.2. Let 𝐶 be a 𝗌𝖺𝖼, Λ be a 𝐶 -classifed set of labels, and 𝗂𝗇𝖼 an incompatibility relation on 𝐶 . For any set 𝑆 equipped 
with an intolerance relation 𝗂𝗇𝗍, any 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent set  of Λ-labellings of 𝑆 , and any 𝑠1, 𝑠2 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍, it holds that 
↓(𝑠2) ∈ 𝐶𝐶𝐷(↓(𝑠1)).

Proof. Under the hypothesis that every 𝐿 ∈  is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent it holds that 𝐿(𝑠2) ∈ 𝑐𝑐(𝐿(𝑠1)), hence ∀𝜆 ∈ ↓(𝑠1) ∃𝜆′ ∈ ↓(𝑠2)
such that 𝜆′ ∈ 𝑐𝑐(𝜆) and also ∀𝜆′ ∈ ↓(𝑠2) ∃𝜆 ∈↓(𝑠1) such that 𝜆′ ∈ 𝑐𝑐(𝜆), hence ↓(𝑠2) ∈ 𝐶𝐶𝐷(↓(𝑠1)). □

We need then to consider the ‘extreme cases’ of compatible dual of a finite set of labels with respect to an inconsistency relation.

Definition 4.9. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classifed set of labels, and 𝗂𝗇𝖼 an incompatibility relation on 𝐶 . Given Λ1 ⊆ Λ we define 
𝑀𝐶𝐶𝐷(Λ1) ≜

⋃
𝜆∈Λ1

𝑀𝐶𝐶(𝜆), where 𝑀𝐶𝐶(𝜆) ≜ {𝜆′ ∈ 𝑐𝑐(𝜆) ∣ ∄𝜆′′ ∈ 𝑐𝑐(𝜆) ∶ 𝜆′ ≺ 𝜆′′}.

Example 4.5. Continuing Example 4.4, with reference to 𝗂𝗇𝖼𝑐
𝐶3 , we have 𝑀𝐶𝐶(𝚒𝚗) = {𝚘𝚞𝚝}, 𝑀𝐶𝐶(𝚞𝚗𝚍) = {𝚞𝚗𝚍} hence 𝑀𝐶𝐶𝐷(Λ1)

= {𝚘𝚞𝚝, 𝚞𝚗𝚍}. Referring instead to 𝗂𝗇𝖼𝑎
𝐶3 we get 𝑀𝐶𝐶(𝚒𝚗) =𝑀𝐶𝐶(𝚞𝚗𝚍) = {𝚞𝚗𝚍}, hence 𝑀𝐶𝐶𝐷(Λ1) = {𝚞𝚗𝚍}.

Note that if Λ1 ≠ ∅ then non emptiness of 𝑀𝐶𝐶𝐷(Λ1) follows from the assumption that for every 𝜆 the set 𝑐𝑐(𝜆) includes some 
maximal elements.

The following propositions provide two interesting properties of 𝑀𝐶𝐶𝐷(Λ1): it belongs to 𝐶𝐶𝐷(Λ1) and is maximal with respect 
to ⪯𝑃 .

Proposition 4.3. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classifed set of labels, and 𝗂𝗇𝖼 an incompatibility relation on 𝐶 . Then, for every non-empty Λ1 ⊆Λ
it holds that 𝑀𝐶𝐶𝐷(Λ1) ∈ 𝐶𝐶𝐷(Λ1).

Proof. From the definition of 𝑀𝐶𝐶𝐷(Λ1) and the above mentioned assumption it is immediate to see that for every 𝜆 ∈ Λ1 ∃𝜆′ ∈
𝑀𝐶𝐶𝐷(Λ1) such that 𝜆′ ∈ 𝑐𝑐(𝜆) and that for every 𝜆′ ∈𝑀𝐶𝐶𝐷(Λ1) ∃𝜆 ∈Λ1 such that 𝜆′ ∈ 𝑐𝑐(𝜆). □

Proposition 4.4. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classified set of labels, and 𝗂𝗇𝖼 an incompatibility relation on 𝐶 . Given Λ1 ⊆Λ with Λ1 ≠ ∅, it holds 
that ∀𝐷 ∈ 𝐶𝐶𝐷(Λ1), 𝐷 ⪯𝑃 𝑀𝐶𝐶𝐷(Λ1).

Proof. For any 𝜆′ ∈ 𝐷, from Definition 4.8 it holds that ∃𝜆 ∈ Λ1 such that 𝜆′ ∈ 𝑐𝑐(𝜆). Then, by Definition 4.9 ∃𝜆′′ ∈ 𝑀𝐶𝐶𝐷(Λ1)
such that 𝜆′′ ∈ 𝑐𝑐(𝜆) and ∄𝜆′′′ ∈ 𝑐𝑐(𝜆) ∶ 𝜆′′ ≺ 𝜆′′′, which implies that 𝜆′ ⪯ 𝜆′′ given that, by Proposition 2.1, ⪯ is total.

Consider now any 𝜆′′ ∈ 𝑀𝐶𝐶𝐷(Λ1). By Definition 4.9 it holds that ∃𝜆 ∈ Λ1 such that 𝜆′′ ∈ 𝑐𝑐(𝜆). Moreover by Definition 4.8

∃𝜆′ ∈𝐷 such that 𝜆′ ∈ 𝑐𝑐(𝜆). Now by Definition 4.9 we have again that ∄𝜆′′′ ∈ 𝑐𝑐(𝜆) ∶ 𝜆′′ ≺ 𝜆′′′ and hence, taking again into account 
that ⪯ is a total preorder, 𝜆′ ⪯ 𝜆′′. □

On this basis, we can now first derive a necessary and sufficient condition for consistency preservation by a well-behaved 𝗌𝗌𝖿 .

Proposition 4.5. Let 𝐶 be a 𝗌𝖺𝖼, Λ1 and Λ2 two 𝐶 -classified 𝗌𝖺𝗅𝗌, and 𝗂𝗇𝖼 a well-founded incompatibility relation on 𝐶 . A well-behaved 𝗌𝗌𝖿
𝗌𝗒𝗇 from Λ1 to Λ2 is consistency preserving if and only if for every non-empty set Λ′

1 ⊆Λ1 it holds that 𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′
1)) ∈ 𝑐𝑐(𝗌𝗒𝗇(Λ′

1)).

Proof. Let 𝗌𝗒𝗇 be a 𝗌𝗌𝖿 satisfying the hypotheses and assume by contradiction that 𝗌𝗒𝗇 is not consistency preserving. This means that 
there are two elements 𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1⊙𝑠2 and an 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent set  of Λ-labellings of 𝑆 such that 𝐷𝐿

𝗌𝗒𝗇


(𝑠1)⊡𝐷𝐿
𝗌𝗒𝗇


(𝑠2). 
Now 𝐷𝐿

𝗌𝗒𝗇


(𝑠1) = 𝗌𝗒𝗇(↓(𝑠1)) and similarly 𝐷𝐿
𝗌𝗒𝗇


(𝑠2) = 𝗌𝗒𝗇(↓(𝑠2)). Let Λ′
1 = ↓(𝑠1). From Proposition 4.2 we have ↓(𝑠2) ∈

𝐶𝐶𝐷(Λ′
1) and hence from Proposition 4.4 ↓(𝑠2) ⪯𝑃 𝑀𝐶𝐶𝐷(Λ′

1). Since 𝗌𝗒𝗇 is well-behaved 𝗌𝗒𝗇(↓(𝑠2)) ⪯ 𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′
1)). By the 

hypothesis, 𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′
1)) ∈ 𝑐𝑐(𝗌𝗒𝗇(Λ′

1)), i.e., 𝗌𝗒𝗇(Λ
′
1)⊟𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′

1)). Since 𝗌𝗒𝗇(↓(𝑠2)) ⪯ 𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′
1)) and 𝗂𝗇𝖼 is well-

founded, according to Definition 2.7 (point 1) 𝗌𝗒𝗇(Λ′
1)⊟𝗌𝗒𝗇(↓(𝑠2)), contradicting 𝗌𝗒𝗇(↓(𝑠1))⊡𝗌𝗒𝗇(↓(𝑠2)).

As to the other direction of the proof, assume now that 𝗌𝗒𝗇 is consistency preserving according to 𝗂𝗇𝖼. Consider a set 𝑆 = {𝑠1, 𝑠2}
with an intolerance relation such that 𝑠1⊙𝑠2. Since by Proposition 4.3 for every set Λ′

1 ⊆Λ1 it holds that 𝑀𝐶𝐶𝐷(Λ′
1) ∈ 𝐶𝐶𝐷(Λ′

1), we 
can identify a consistent set  of Λ1-labellings of 𝑆 such that ↓(𝑠1) = Λ′

1 and ↓(𝑠2) =𝑀𝐶𝐶𝐷(Λ′
1). Then by consistency preservation 
16

it must also hold that 𝗌𝗒𝗇(𝑀𝐶𝐶𝐷(Λ′
1)) ∈ 𝑐𝑐(𝗌𝗒𝗇(Λ′

1)). □
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Table 1

Illustration of the proof of Proposition 4.7.

Λ1 inc
𝐶3 𝗂𝗇𝖼𝑎

𝐶3 𝗂𝗇𝖼𝑐
𝐶3

𝗌𝗒𝗇AJ(Λ1)

{𝚒𝚗} {𝚞𝚗𝚍} {𝚞𝚗𝚍} {𝚘𝚞𝚝}
𝖲𝗄𝖩 𝖭𝗈𝖩 𝖭𝗈𝖩 𝖭𝗈𝖩

{𝚘𝚞𝚝} {𝚒𝚗} {𝚒𝚗} {𝚒𝚗}
𝖭𝗈𝖩 𝖲𝗄𝖩 𝖲𝗄𝖩 𝖲𝗄𝖩

{𝚞𝚗𝚍} {𝚒𝚗} {𝚞𝚗𝚍} {𝚞𝚗𝚍}
𝖭𝗈𝖩 𝖲𝗄𝖩 𝖭𝗈𝖩 𝖭𝗈𝖩

{𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚞𝚗𝚍} {𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖭𝗈𝖩 𝖭𝗈𝖩

{𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍}
𝖭𝗈𝖩 𝖲𝗄𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

As an example of application of the above result, we show that the function 𝗌𝗒𝗇AJ is consistency preserving according to the 
incompatibility relations inc𝐶3 , 𝗂𝗇𝖼𝑎

𝐶3 , and 𝗂𝗇𝖼𝑐
𝐶3 while it is not according to 𝗂𝗇𝖼𝐶3 .

First of all, we need to show that 𝗌𝗒𝗇AJ is well-behaved.

Proposition 4.6. The 𝗌𝗌𝖿 𝗌𝗒𝗇AJ is well-behaved.

Proof. We have to prove that for any two non-empty sets Λ1, Λ2 ⊆ΛIOU such that Λ1 ⪯𝑃 Λ2, 𝗌𝗒𝗇AJ(Λ1) ⪯ 𝗌𝗒𝗇AJ(Λ2). Since the strict 
order ≺ induced on ΛAJ is total, it is sufficient to show that for any two non-empty sets Λ1, Λ2 ⊆ΛIOU, whenever 𝗌𝗒𝗇AJ(Λ2) ≺ 𝗌𝗒𝗇AJ(Λ1)
it does not hold that Λ1 ⪯𝑃 Λ2. First, consider the case that 𝗌𝗒𝗇AJ(Λ1) = 𝖲𝗄𝖩, thus Λ1 = {𝚒𝚗}. It is easy to see that {𝚒𝚗} 𝑃 Λ2 for any 
Λ2 ⊆ΛIOU, with Λ2 ∉ {∅, {𝚒𝚗}}, which is impossible due to 𝗌𝗒𝗇AJ(Λ2) ≺ 𝖲𝗄𝖩. Consider then the case 𝗌𝗒𝗇AJ(Λ1) = 𝖢𝗋𝖩, thus {𝚒𝚗} ⊊Λ1
and 𝗌𝗒𝗇AJ(Λ2) = 𝖭𝗈𝖩 entailing 𝚒𝚗 ∉Λ2. It is then easy to see that for any non-empty set Λ2 such that 𝚒𝚗 ∉ Λ2 and any set Λ1 such that 
{𝚒𝚗} ⊊Λ1, Λ1 𝑃 Λ2. Finally, if 𝗌𝗒𝗇AJ(Λ1) = 𝖭𝗈𝖩 then the thesis trivially holds, since there is no label strictly lower than 𝖭𝗈𝖩. □

Proposition 4.7. The 𝗌𝗌𝖿 𝗌𝗒𝗇AJ is consistency preserving according to the incompatibility relations inc𝐶3 , 𝗂𝗇𝖼𝑎
𝐶3 , and 𝗂𝗇𝖼𝑐

𝐶3 while it is not 
according to 𝗂𝗇𝖼𝐶3 .

Proof. We need to show that for every non-empty set Λ1 ⊆ΛIOU it holds that 𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1)) ∈ 𝑐𝑐(𝗌𝗒𝗇AJ(Λ1)). For inc𝐶3 , 𝗂𝗇𝖼𝑎
𝐶3 , 

and 𝗂𝗇𝖼𝑐
𝐶3 this is illustrated in Table 1, where the first column presents the various possible cases for Λ1 with the relevant value of 

𝗌𝗒𝗇AJ(Λ1) and the following columns (illustrating inc𝐶3 , 𝗂𝗇𝖼𝑎
𝐶3 , and 𝗂𝗇𝖼𝑐

𝐶3 respectively) show the corresponding 𝑀𝐶𝐶𝐷(Λ1) and the 
relevant value of 𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1)). By inspection, it can be checked that, as desired, for every pair (𝗌𝗒𝗇AJ(Λ1), 𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1)))
obtained by taking the first element from a row of the first column, and the second element from any other cell (say the 𝑖-th with 
𝑖 ∈ {2, 3, 4}) of the same row it holds that (𝗌𝗒𝗇AJ(Λ1), 𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1))) ∉ 𝗂𝗇𝖼′ where 𝗂𝗇𝖼′ is the incompatibility relation induced by 
the 𝗂𝗇𝖼 relation specified at the top of the 𝑖-th column (from which the second element of the pair was taken). For instance, considering 
the fifth row, with Λ1 = {𝚒𝚗, 𝚘𝚞𝚝} and (𝗌𝗒𝗇AJ(Λ1)) = 𝖢𝗋𝖩 and its second cell where (according to inc𝐶3 ) 𝑀𝐶𝐶𝐷(Λ1) = {𝚒𝚗, 𝚞𝚗𝚍} we 
have (𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1))) = 𝖢𝗋𝖩 and then (𝖢𝗋𝖩, 𝖢𝗋𝖩) ∉ 𝗂𝗇𝖼′ since (𝗆𝗂𝖽, 𝗆𝗂𝖽) ∉ inc𝐶3 .

Concerning 𝗂𝗇𝖼𝐶3 a counterexample is provided by Λ1 = {𝚒𝚗, 𝚘𝚞𝚝} with 𝑀𝐶𝐶𝐷(Λ1) = {𝚒𝚗, 𝚘𝚞𝚝} and 𝗌𝗒𝗇AJ(Λ1) =
𝗌𝗒𝗇AJ(𝑀𝐶𝐶𝐷(Λ1)) = 𝖢𝗋𝖩 while (𝗆𝗂𝖽, 𝗆𝗂𝖽) ∈ 𝗂𝗇𝖼𝐶3 . □

The fact that 𝗌𝗒𝗇AJ is not consistency preserving according to 𝗂𝗇𝖼𝐶3 is not surprising, given that 𝗂𝗇𝖼𝐶3 essentially reflects the fully 
bipolar nature of stable semantics, while 𝗌𝗒𝗇AJ admits tripolar assessments.

As stable labellings are a special case of complete labellings, it can be remarked however that, when applied to stable labellings, 
𝗌𝗒𝗇AJ partially preserves consistency, which is, in a sense, weakened from 𝗂𝗇𝖼𝐶3 to 𝗂𝗇𝖼𝑐

𝐶3 . We leave the investigation of some formal 
notion of partial preservation to future work.

In contrast with the essentially positive result concerning consistency preservation properties of 𝗌𝗒𝗇AJ, reinstatement preservation 
17

turns out to be problematic, as discussed in next section.
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Fig. 5. The argumentation frameworks 𝐴𝐹1 and 𝐴𝐹 ′
1 used in Example 4.6.

Fig. 6. The argumentation framework 𝐴𝐹2 used in Example 4.6.

4.2. An impossibility result for reinstatement preservation

Addressing reinstatement preservation turns out to require more articulated considerations: in particular basic counterexamples 
to its satisfaction can easily be identified.

Example 4.6 (Mutual rejection). Consider the argumentation framework 𝐴𝐹1 = ⟨{𝛼, 𝛽}, {(𝛼, 𝛽), (𝛽, 𝛼)}⟩ i.e., a pair of mutually attacking 
arguments (see Fig. 5). In this case, under grounded semantics the unique prescribed labelling 𝐿 is such that 𝐿(𝛼) = 𝐿(𝛽) = 𝚞𝚗𝚍. 
Then the synthesis produced by 𝗌𝗒𝗇AJ for both arguments is 𝖭𝗈𝖩, corresponding to the pair (𝗇𝖾𝗀, 𝗇𝖾𝗀) which is ‘forbidden’ by both 
𝗋𝗏𝑐𝑓

𝐶3 and 𝗋𝗏𝑐
𝐶3 . In fact, for arguments 𝛼 and 𝛽, the outcome produced by 𝗌𝗒𝗇AJ is the same as for the argumentation framework 

𝐴𝐹 ′
1 = ⟨{𝛼, 𝛽, 𝛾, 𝛿}, {(𝛼, 𝛽), (𝛽, 𝛼), (𝛾, 𝛼), (𝛿, 𝛽)}⟩, i.e., a case where both arguments are definitely rejected. Equating these two different 

situations is obviously debatable and, in a sense, the use of ΛAJ and 𝗌𝗒𝗇AJ involves a significant information loss.

In this example, the problem would not arise with the use of a multiple status semantics like stable, semi-stable, or preferred 
semantics. In fact, we would get two prescribed labellings 𝐿1 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝)} and 𝐿2 = {(𝛼, 𝚘𝚞𝚝), (𝛽, 𝚒𝚗)}. Then the synthesis 
produced by 𝗌𝗒𝗇AJ for both arguments is 𝖢𝗋𝖩, corresponding to the pair (𝗆𝗂𝖽, 𝗆𝗂𝖽) which is allowed by both 𝗋𝗏𝑐𝑓

𝐶3 and 𝗋𝗏𝑐
𝐶3 .

Reinstatement preservation failures can occur also with multiple status semantics, though. Consider the argumentation framework 
depicted in Fig. 6: 𝐴𝐹2 = ⟨{𝛼, 𝛽, 𝛾, 𝛿, 𝜖}, {(𝛼, 𝛽), (𝛾, 𝛼), (𝛾, 𝛾), (𝛿, 𝛾), (𝛿, 𝜖), (𝜖, 𝛿)}⟩. Here preferred semantics prescribes the labellings 
𝐿1 = {(𝛼, 𝚞𝚗𝚍), (𝛽, 𝚞𝚗𝚍), (𝛾, 𝚞𝚗𝚍), (𝛿, 𝚘𝚞𝚝), (𝜖, 𝚒𝚗)} and 𝐿2 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚘𝚞𝚝), (𝛿, 𝚒𝚗), (𝜖, 𝚘𝚞𝚝)}. The synthesis produced by 𝗌𝗒𝗇AJ

for 𝛼 is 𝖢𝗋𝖩 and for 𝛽 is 𝖭𝗈𝖩 corresponding to the pair (𝗆𝗂𝖽, 𝗇𝖾𝗀) which is forbidden by both 𝗋𝗏𝑐𝑓
𝐶3 and 𝗋𝗏𝑐

𝐶3 .

To address the issues evidenced in Example 4.6, one may observe that the difficulties with reinstatement preservation derive from 
the asymmetry of ΛAJ (and hence of 𝗌𝗒𝗇AJ), which encompasses two levels of positive justification but considers only one ‘flat’ level 
of negative justification, thus showing a sort of bias in terms of higher attention paid to positive statuses and consistency issues with 
respect to their dual notions.

In particular, one may observe that 𝗌𝗒𝗇AJ fails to satisfy a simple desirable property, that we call faithfulness. Intuitively, we 
consider a 𝗌𝗌𝖿 𝗌𝗒𝗇 faithful with respect to the set of labels which are aggregated, if the classification of the label produced by 𝗌𝗒𝗇 is 
not ‘surprising’ with respect to the set of classifications of the labels which are aggregated.

Definition 4.10. Let 𝐶 be a 𝗌𝖺𝖼, Λ1 and Λ2 two 𝐶 -classified 𝗌𝖺𝗅𝗌. A 𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is faithful iff for every ∅ ⊊ Λ ⊆ Λ1
∃𝑐 ∈ {𝐶Λ1

(𝜆) ∣ 𝜆 ∈Λ} ∶ 𝐶Λ2
(𝗌𝗒𝗇(Λ)) ≤ 𝑐 and ∃𝑐′ ∈ {𝐶Λ1

(𝜆) ∣ 𝜆 ∈Λ} ∶ 𝑐′ ≤ 𝐶Λ2
(𝗌𝗒𝗇(Λ)).

In words, the result produced by 𝗌𝗒𝗇 is neither strictly greater nor strictly lower than all labels which are aggregated. In particular, 
the aggregation of a singleton {𝜆1} must produce as result an element 𝜆2 with 𝐶Λ1

(𝜆1) = 𝐶Λ2
(𝜆2) i.e., belonging to the same class as 

the only element of the singleton. This basic requirement is violated by 𝗌𝗒𝗇AJ, as 𝗌𝗒𝗇AJ({𝚞𝚗𝚍}) = 𝖭𝗈𝖩, with 𝐶3
ΛIOU

(𝚞𝚗𝚍) =𝗆𝗂𝖽 while 
𝐶3
ΛAJ

(𝖭𝗈𝖩) = 𝗇𝖾𝗀.

To overcome this limitation, one can consider an alternative notion of justification status which distinguishes non-positive justi-

fications statuses into strongly not justified, denoted as 𝖲𝖭𝗈𝖩, which occurs when the argument is labelled 𝚘𝚞𝚝 in all extensions, and 
18

weakly not justified, denoted as 𝖶𝖭𝗈𝖩, which occurs when the argument is never labelled 𝚒𝚗 and is labelled 𝚞𝚗𝚍 at least once.
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Fig. 7. The argumentation framework 𝐴𝐹𝑓𝑑 used in Example 4.7.

Accordingly, we consider a 𝗌𝖺𝗅 Λ′AJ = {𝖲𝗄𝖩, 𝖢𝗋𝖩, 𝖶𝖭𝗈𝖩, 𝖲𝖭𝗈𝖩}, with classification 𝐶3
Λ′AJ

= {(𝖲𝗄𝖩, 𝗉𝗈𝗌), (𝖲𝖭𝗈𝖩, 𝗇𝖾𝗀), (𝖢𝗋𝖩, 𝗆𝗂𝖽),
(𝖶𝖭𝗈𝖩, 𝗆𝗂𝖽)}, and we introduce the 𝗌𝗌𝖿 𝗌𝗒𝗇′AJ from ΛIOU to Λ′AJ defined, for every Λ ⊆ΛIOU as follows:

• 𝗌𝗒𝗇′AJ(Λ) = 𝖲𝗄𝖩 if Λ = {𝚒𝚗};

• 𝗌𝗒𝗇′AJ(Λ) = 𝖢𝗋𝖩 if Λ ⊋ {𝚒𝚗};

• 𝗌𝗒𝗇′AJ(Λ) = 𝖲𝖭𝗈𝖩 if Λ = {𝚘𝚞𝚝};

• 𝗌𝗒𝗇′AJ(Λ) =𝖶𝖭𝗈𝖩 otherwise.

Intuitively, the adoption of Λ′AJ and 𝗌𝗒𝗇′AJ fills the gap related to the inherent asymmetry of ΛAJ and, in fact, it is easy to see 
that 𝗌𝗒𝗇′AJ is faithful.

It is immediate to see that faithfulness is a sufficient condition for both consistency and reinstatement preservation when the set 
of labellings is a singleton (which covers in particular the case of grounded semantics).

Proposition 4.8. Let 𝐶 be a 𝗌𝖺𝖼 equipped with an incompatibility relation 𝗂𝗇𝖼 (a reinstatement violation relation 𝗋𝗏), let Λ1 and Λ2 be 
two 𝐶 -classified 𝗌𝖺𝗅𝗌, and 𝗌𝗒𝗇 a faithful 𝗌𝗌𝖿 from Λ1 to Λ2. For any set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍 and any non-empty 
𝗂𝗇𝗍-𝗂𝗇𝖼-consistent (𝗂𝗇𝗍-𝗋𝗏-compliant) set 1 of Λ1-labellings of 𝑆 such that |1| = 1, it holds that the labelling 𝐷𝐿

𝗌𝗒𝗇
1

is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent 
(𝗂𝗇𝗍-𝗋𝗏-compliant).

Proof. Let 1 = {𝐿}. Then, for any 𝑠 ∈ 𝑆 it holds that ↓
1(𝑠) = {𝐿(𝑠)} and then, from faithfulness of 𝗌𝗒𝗇 we get 𝐶Λ1

(𝐿(𝑠)) =
𝐶Λ2

(𝗌𝗒𝗇(↓
1(𝑠))). It follows that every consistency or reinstatement property satisfied by 𝐿(𝑠) is also satisfied by 𝐷𝐿

𝗌𝗒𝗇
1

. □

While the simple result above confirms that faithfulness is a desirable property, another counterexample turns out to require 
further considerations.

Example 4.7 (Floating defeat). Consider the argumentation framework: 𝐴𝐹𝑓𝑑 = ⟨{𝛼, 𝛽, 𝛾}, {(𝛼, 𝛽), (𝛽, 𝛼), (𝛼, 𝛾), (𝛽, 𝛾)}⟩ (see Fig. 7). 
Here preferred and stable semantics prescribe two labellings: 𝐿1 = {(𝛼, 𝚒𝚗), (𝛽, 𝚘𝚞𝚝), (𝛾, 𝚘𝚞𝚝)} and 𝐿2 = {(𝛼, 𝚘𝚞𝚝), (𝛽, 𝚒𝚗), (𝛾, 𝚘𝚞𝚝)}. 
The synthesis produced by 𝗌𝗒𝗇′AJ for 𝛼 and 𝛽 is 𝖢𝗋𝖩 and for 𝛾 is 𝖲𝖭𝗈𝖩 corresponding to the pair (𝗆𝗂𝖽, 𝗇𝖾𝗀) which is forbidden by both 
𝗋𝗏𝑐𝑓

𝐶3 and 𝗋𝗏𝑐
𝐶3 .

Example 4.7 has to do with the debated question of floating defeat and, in a sense, provides a further viewpoint on its thorny 
nature. Here an argument, namely 𝛾 , is labelled 𝚘𝚞𝚝 in all labellings. As a consequence, any faithful synthesis can only produce an 
outcome whose classification is 𝗇𝖾𝗀. However, the label 𝚘𝚞𝚝 is motivated by different arguments in different labellings, which in a 
sense play in turn the role of ‘effective attacker’: no single argument is labelled 𝚒𝚗 in all labellings and reinstatement preservation 
turns out to be incompatible with consistency preservation under the weak requirements imposed by conflict-freeness, as formalized 
by the following result.

Proposition 4.9. Given the argumentation framework and relevant labellings presented in Example 4.7, under the use of the 𝗌𝖺𝖼 𝐶3 =
{𝗉𝗈𝗌, 𝗆𝗂𝖽, 𝗇𝖾𝗀} and of the 𝗌𝖺𝗅 ΛIOU for the labellings 𝐶3-classified according to 𝐶3

ΛIOU
, for any 𝗌𝖺𝗅 Λ there is no simple synthesis function 

𝗌𝗒𝗇 from ΛIOU to Λ which is faithful, consistency-preserving for inc𝐶3 and reinstatement-preserving for 𝗋𝗏𝑐𝑓
𝐶3 .

Proof. With reference to Example 4.7, letting  = {𝐿1, 𝐿2} we get ↓(𝛼) = ↓(𝛽) = {𝚒𝚗, 𝚘𝚞𝚝} and ↓(𝛾) = {𝚘𝚞𝚝}. Given that 𝗌𝗒𝗇
is faithful it follows that for any set of labels Λ it holds that 𝐶3

Λ(𝗌𝗒𝗇(
↓(𝛾))) = 𝗇𝖾𝗀. Let us now consider the possible options for 

𝑐 = 𝐶3
Λ(𝗌𝗒𝗇(

↓(𝛼))) = 𝐶3
Λ(𝗌𝗒𝗇(

↓(𝛽))) = 𝐶3
Λ(𝗌𝗒𝗇({𝚒𝚗, 𝚘𝚞𝚝})). If 𝑐 = 𝗉𝗈𝗌 the outcome is not →-inc𝐶3 -consistent with respect to the 

mutually attacking arguments 𝛼 and 𝛽, while if 𝑐 =𝗆𝗂𝖽 or 𝑐 = 𝗇𝖾𝗀 the outcome is not →-𝗋𝗏𝑐𝑓
𝐶3 -compliant with respect to 𝛾 . □

The problem evidenced by Proposition 4.9 is rooted in a difficulty intrinsic to the notion of reinstatement preservation and not 
19

specific to the argumentation domain. Letting  = {𝐿1, … , 𝐿𝑛} be a set of labellings of a set 𝑆 and focusing on a given element 𝑠
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of 𝑆 , in every labelling 𝐿𝑖 ∈  a single element 𝑠′ (which may differ from labelling to labelling) is enough to ensure reinstatement 
compliance as far as the value of 𝐿𝑖(𝑠) is concerned. In the example, 𝛼 and 𝛽 ensure in turn reinstatement compliance for the label 
𝚘𝚞𝚝 assigned in both labellings to 𝛾 . However, when a synthesis is drawn, it may happen that while the synthesised label of 𝑠 is, in a 
sense, reminiscent of the effect of the various individual compliance-ensuring elements 𝑠′ , none of them keeps a suitable aggregated 
value, due to a sort of ‘dilution’. In the example, the synthesised label of 𝛾 remains 𝚘𝚞𝚝 but the information that at least one of its 
attackers was 𝚒𝚗 in each labelling is somehow lost.

This suggests that in order to achieve a viable notion of reinstatement preservation some additional technical device is needed, 
which we propose next.

4.3. A viable notion of reinstatement preservation

As evidenced in the previous section, a formal mechanism to manage the information which can justify, from a reinstatement 
perspective, a given synthesised labelling is necessary. To this purpose we introduce the notion of r-enhanced sets and r-enhanced 
intolerance relations. In words, for each element 𝑠 ∈ 𝑆 which has at least two intolerant elements (formally |𝑠𝑛𝑡(𝑠)| > 1), an additional 
virtual element, denoted as 𝑠̂, is introduced, which is meant to keep track of the most effective (from a reinstatement perspective) 
labels of the intolerant elements.

Definition 4.11. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, the corresponding r-enhanced set and relation, denoted 
respectively as 𝑆 and 𝗂𝗇𝗍, are defined as follows:

• 𝑆 ≜ 𝑆 ∪ {𝑠̂ ∣ 𝑠 ∈ 𝑆 and |𝑠𝑛𝑡(𝑠)| > 1};

• 𝗂𝗇𝗍 ≜ 𝗂𝗇𝗍 ∪ {(𝑠̂, 𝑠) ∣ 𝑠 ∈ 𝑆 and |𝑠𝑛𝑡(𝑠)| > 1}.

A labelling on a set 𝑆 is extended to its r-enhanced version 𝑆 by assigning to each additional element 𝑠̂ a label with the highest 
class among those of the elements of 𝑠𝑛𝑡(𝑠). In case more elements have labels with the same highest class the choice is arbitrary 
among them. As we will see, this non deterministic choice is inessential to the achievement of the desired results.

Definition 4.12. Given a 𝗌𝖺𝖼 𝐶 and a 𝐶 -classifed 𝗌𝖺𝗅 Λ, a set 𝑆 , and a Λ-labelling 𝐿 of 𝑆 , a corresponding r-enhanced labelling 𝐿̃ on 
𝑆 is defined for every 𝑠 ∈ 𝑆 as follows:

• 𝐿̃(𝑠) =𝐿(𝑠) if 𝑠 ∈ 𝑆 ;

• 𝐿̃(𝑠̂) = choice

(
arg max

𝜆∈{𝐿(𝑠′)∣𝑠′∈𝑠𝑛𝑡(𝑠)}
𝐶Λ(𝜆)

)
if ̂𝑠 ∈ 𝑆 ⧵𝑆

where choice (𝐶) is an operator returning an arbitrary element9 of the set 𝐶 . For a labelling 𝐿 the set of corresponding r-enhanced 
labellings is denoted as 𝐿̂.

Example 4.8. To illustrate the above notions, consider again the argumentation framework presented in Example 4.7, namely 𝐴𝐹𝑓𝑑

with 𝑆 = {𝛼, 𝛽, 𝛾} and 𝗂𝗇𝗍 = {(𝛼, 𝛽), (𝛽, 𝛼), (𝛼, 𝛾), (𝛽, 𝛾)}.

We get 𝑆 = {𝛼, 𝛽, 𝛾, ̂𝛾} and 𝗂𝗇𝗍 = {(𝛼, 𝛽), (𝛽, 𝛼), (𝛼, 𝛾), (𝛽, 𝛾), (𝛾̂ , 𝛾)}. The only corresponding r-enhanced labelling 𝐿1 coincides with 
𝐿1 with the addition of 𝐿1(𝛾̂) = 𝚒𝚗 and similarly 𝐿2 coincides with 𝐿2 with the addition of 𝐿2(𝛾̂) = 𝚒𝚗.

The properties of consistency and reinstatement compliance need small adaptations for r-enhanced labellings, since the additional 
virtual elements need a suitable treatment. On the one hand, the labels they are assigned are not subjected to any constraint, on the 
other hand they affect the evaluation of the elements they are intolerant of. This is reflected in the following definitions.

Definition 4.13. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 equipped with an incompatibility relation 𝗂𝗇𝖼, and 
a 𝐶 -classified 𝗌𝖺𝗅 Λ, for any Λ-labelling 𝐿 of 𝑆 a corresponding r-enhanced labelling 𝐿̃ is 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent iff

∃𝑠1 ∈ 𝑆, 𝑠2 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 and 𝐿̃(𝑠1)⊡𝐿̃(𝑠2) (8)

Conversely, we say that 𝐿̃ is 𝗂𝗇𝗍-𝗂𝗇𝖼-consistent if it is not 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent, i.e.,

∀𝑠1 ∈ 𝑆, 𝑠2 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 it holds that 𝐿̃(𝑠1)⊟𝐿̃(𝑠2). (9)

Definition 4.14. Given a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, a 𝗌𝖺𝖼 𝐶 equipped with a reinstatement violation relation 
𝗋𝗏, and a 𝐶 -classified 𝗌𝖺𝗅 Λ, for any Λ-labelling 𝐿 of 𝑆 a corresponding r-enhanced labelling 𝐿̃ is 𝗂𝗇𝗍-𝗋𝗏-uncompliant iff
20

9 In case the set 𝑠𝑛𝑡(𝑠) is infinite this requires adopting the axiom of choice.
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∃𝑠2 ∈ 𝑆 ∶

{
min(𝐶)⊡𝐶Λ(𝐿̃(𝑠2)) if 𝑠2 is initial

∀𝑠1 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 it holds that 𝐿̃(𝑠1)⊡𝐿̃(𝑠2) otherwise
(10)

Conversely, we say that 𝐿̃ is 𝗂𝗇𝗍-𝗋𝗏-compliant if it is not 𝗂𝗇𝗍-𝗋𝗏-uncompliant, i.e.,

∀𝑠2 ∈ 𝑆

{
min(𝐶)⊟𝐶Λ(𝐿̃(𝑠2)) if 𝑠2 is initial

∃𝑠1 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 and 𝐿̃(𝑠1)⊟𝐿̃(𝑠2) otherwise
(11)

In words, consistency and reinstatement are evaluated by taking into account also the additional elements ̂𝑠 included in 𝑆 , whose 
labels are taken for granted (i.e., are not required to satisfy the condition on initial elements).

It is easy to see that an r-enhanced labelling 𝐿̃ inherits the consistency and reinstatement compliance properties from 𝐿.

Proposition 4.10. Given a 𝗌𝖺𝖼 𝐶 equipped with an incompatibility relation 𝗂𝗇𝖼, a 𝐶 -classified 𝗌𝖺𝗅 Λ and a set 𝑆 equipped with an intolerance 
relation 𝗂𝗇𝗍, if a Λ-labelling 𝐿 of 𝑆 is (not) 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent then any corresponding r-enhanced labelling 𝐿̃∈ 𝐿̂ is (not) 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent.

Proof. If 𝐿 is 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent then ∃𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1⊙𝑠2 and 𝐿(𝑠1)⊡𝐿(𝑠2) and, since 𝑠1, 𝑠2 ∈ 𝑆 , also 𝐿̃ is 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent.

If 𝐿 is not 𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent then ∀𝑠1, 𝑠2 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 it holds that 𝐿(𝑠1)⊟𝐿(𝑠2). Assume by contradiction that 𝐿̃ is 
𝗂𝗇𝗍-𝗂𝗇𝖼-inconsistent. Then, it must be the case that ∃𝑠̂ ∈ 𝑆 ⧵ 𝑆 and 𝑠 ∈ 𝑆 such that 𝐿̃(𝑠̂)⊡𝐿̃(𝑠). However, by Definition 4.12, ∃𝑠′ ∈ 𝑆

such that 𝑠′ ⊙ 𝑠 and 𝐿̃(𝑠̂) = 𝐿(𝑠′), while 𝐿̃(𝑠) = 𝐿(𝑠), thus getting 𝐿(𝑠′)⊡𝐿(𝑠) which contradicts the hypothesis that 𝐿 is not 𝗂𝗇𝗍-𝗂𝗇𝖼-
inconsistent. □

Proposition 4.11. Given a 𝗌𝖺𝖼 𝐶 equipped with a reinstatement violation relation 𝗋𝗏, a 𝐶 -classified 𝗌𝖺𝗅 Λ and a set 𝑆 equipped with an 
intolerance relation 𝗂𝗇𝗍, if a Λ-labelling 𝐿 of 𝑆 is (not) 𝗂𝗇𝗍-𝗋𝗏-uncompliant then any corresponding r-enhanced labelling 𝐿̃ ∈ 𝐿̂ is (not) 
𝗂𝗇𝗍-𝗋𝗏-uncompliant.

Proof. If 𝐿 is 𝗂𝗇𝗍-𝗋𝗏-uncompliant then one of the two cases of (5) in Definition 2.10 applies. If the first case holds, then obviously also 
the first case of (10) in Definition 4.14 holds. As to the second case, given the hypothesis that ∀𝑠1 ∈ 𝑆 such that 𝑠1 ⊙ 𝑠2 it holds that 
𝐿(𝑠1)⊡𝐿(𝑠2), assume by contradiction that 𝐿̃ is not 𝗂𝗇𝗍-𝗋𝗏-uncompliant. It must then be the case that ∃𝑠 ∈ 𝑆 such that 𝐿̃(𝑠̂)⊟𝐿̃(𝑠2). 
However, by Definition 4.12, ∃𝑠′ ∈ 𝑆 such that 𝑠′ ⊙ 𝑠 and 𝐿̃(𝑠̂) =𝐿(𝑠′), thus getting 𝐿(𝑠′)⊟𝐿(𝑠) which contradicts the hypothesis.

If 𝐿 is not 𝗂𝗇𝗍-𝗋𝗏-uncompliant then we observe that both conditions specified in (6) of Definition 2.10 are not affected by the 
additional elements in 𝑆 and hence continue to hold for 𝐿̃, implying that the corresponding conditions in (11) of Definition 4.14

hold in turn. □

We can now consider an adjusted version of the notion of reinstatement preservation.

Definition 4.15. Let 𝐶 be a 𝗌𝖺𝖼 equipped with a reinstatement violation relation 𝗋𝗏, and Λ1 and Λ2 be two 𝐶 -classified sets of labels. 
A 𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is weakly reinstatement preserving iff for any set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍 and any non-empty 
𝗂𝗇𝗍-𝗋𝗏-compliant set 1 of Λ1-labellings of 𝑆 it holds that any labelling 𝐷𝐿

𝗌𝗒𝗇

̃1
is 𝗂𝗇𝗍-𝗋𝗏-compliant (see Definition 4.14), where, with a 

little abuse of notation, for a set of labellings  we define ̃ = {choice
(
𝐿̂
)
∣𝐿 ∈ }.

In words, the requirement of reinstatement preservation is verified by applying the synthesis function on sets of r-enhanced 
labellings and checking that the outcome is still 𝗂𝗇𝗍-𝗋𝗏-compliant.

It is easy to see that a reinstatement preserving 𝗌𝗌𝖿 is also weakly reinstatement preserving.

Proposition 4.12. Let 𝐶 be a 𝗌𝖺𝖼 equipped with a reinstatement violation relation 𝗋𝗏, and Λ1 and Λ2 be two 𝐶 -classified sets of labels. If a 
𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is reinstatement preserving then it is also weakly reinstatement preserving.

Proof. Consider an 𝗂𝗇𝗍-𝗋𝗏-compliant set 1 of Λ1-labellings. Since 𝗌𝗒𝗇 is reinstatement preserving, 𝐷𝐿
𝗌𝗒𝗇
1

is 𝗂𝗇𝗍-𝗋𝗏-compliant. Accord-

ing to Definition 4.12, it is easy to see that any 𝐷𝐿
𝗌𝗒𝗇

̃1
coincides in 𝑆 with 𝐷𝐿

𝗌𝗒𝗇
1

, thus by Definition 4.14 the fact that the latter is 
𝗂𝗇𝗍-𝗋𝗏-compliant entails that the first is 𝗂𝗇𝗍-𝗋𝗏-compliant too. □

As we will see, the weakening of the notion of reinstatement preservation avoids impossibility and provides anyway a useful 
soundness check for synthesis functions.

4.4. Characterizing weakly reinstatement preserving synthesis functions

In order to provide a characterization of weakly reinstatement preserving synthesis functions, we follow a path similar to the one 
21

followed in Section 4.1 for characterizing consistency preserving synthesis functions.
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First, we introduce a notion of r-compatible dual for reinstatement. Differently from the case of inconsistency, the notion here 
takes into account the presence of additional virtual elements. The idea is that, given a set of labels Λ1 and a reinstatement violation 
relation, a set of labels Λ2 is a compatible dual of Λ1 if, given an 𝗂𝗇𝗍-𝗋𝗏-compliant set of labellings 1, assuming that Λ1 = ↓

1(𝑠1) for 

some element 𝑠1 ∈ 𝑆 , it is possible that Λ2 = ̃1
↓
(𝑠2) for some element 𝑠2 ∈ 𝑆 such that (𝑠2, 𝑠1) ∈ 𝗂𝗇𝗍. This gives rise to the following 

definition.

Definition 4.16. Let 𝐶 be a 𝗌𝖺𝖼, Λ be a 𝐶 -classifed set of labels, and Λ1 ⊆ Λ. Given a reinstatement violation relation 𝗋𝗏 on 𝐶 , we 
say that Λ2 ⊆ Λ is a 𝗋𝗏-r-compatible dual of Λ1, denoted as Λ2 ∈ 𝑅𝐶𝐷(Λ1), iff ∀𝜆 ∈ Λ1 ∃𝜆′ ∈ Λ2 such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆), and ∀𝜆′ ∈ Λ2
∃𝜆 ∈Λ1 such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆).

Example 4.9. Consider ΛIOU and the reinstatement violation relation 𝗋𝗏𝑐
𝐶3 = {(𝗇𝖾𝗀, 𝗇𝖾𝗀), (𝗇𝖾𝗀, 𝗆𝗂𝖽), (𝗆𝗂𝖽, 𝗇𝖾𝗀)}. Letting Λ1 =

{𝚘𝚞𝚝, 𝚞𝚗𝚍} we have that ⃖⃖ ⃖𝑟𝑐(𝚘𝚞𝚝) = {𝚒𝚗}, ⃖⃖ ⃖𝑟𝑐(𝚞𝚗𝚍) = {𝚒𝚗, 𝚞𝚗𝚍}. Hence 𝑅𝐶𝐷(Λ1) = {{𝚒𝚗}, {𝚞𝚗𝚍, 𝚒𝚗}}: 𝚒𝚗 must be included in ev-

ery element of 𝑅𝐶𝐷(Λ1) since it is the only backward compatible label with 𝚘𝚞𝚝, while both 𝚒𝚗 and 𝚞𝚗𝚍 are backward compatible 
with 𝚞𝚗𝚍. Considering the weaker reinstatement violation relation 𝗋𝗏𝑐𝑓

𝐶3 = {(𝗇𝖾𝗀, 𝗇𝖾𝗀), (𝗆𝗂𝖽, 𝗇𝖾𝗀)} we would have ⃖⃖ ⃖𝑟𝑐(𝚘𝚞𝚝) = {𝚒𝚗}, 
⃖⃖ ⃖𝑟𝑐(𝚞𝚗𝚍) = {𝚒𝚗, 𝚞𝚗𝚍, 𝚘𝚞𝚝}, and hence 𝑅𝐶𝐷(Λ1) = {{𝚒𝚗}, {𝚒𝚗, 𝚞𝚗𝚍}, {𝚒𝚗, 𝚘𝚞𝚝}, {𝚒𝚗, 𝚞𝚗𝚍, 𝚘𝚞𝚝}}.

Note that, though Definition 4.8 and Definition 4.16 are structurally similar, they differ significantly since in Definition 4.16

compatibility is meant to be evaluated ‘backwards’ with respect to the intolerance relation, as shown by Proposition 4.13, which 
confirms the intended meaning and soundness of Definition 4.16.

Proposition 4.13. Let 𝐶 be a 𝗌𝖺𝖼, Λ be a 𝐶 -classifed set of labels, and 𝗋𝗏 a well-founded reinstatement violation relation on 𝐶 . For any set 
𝑆 equipped with an intolerance relation 𝗂𝗇𝗍, any 𝗂𝗇𝗍-𝗋𝗏-compliant set 1 of Λ-labellings of 𝑆 and any non-initial element 𝑠1 of 𝑆 there exists 
𝑠2 ∈ 𝑆 such that (𝑠2, 𝑠1) ∈ 𝗂𝗇𝗍 and ̃1

↓
(𝑠2) ∈𝑅𝐶𝐷(̃1

↓
(𝑠1)).10

Proof. Consider first the case where |𝑠𝑛𝑡(𝑠1)| = 1, i.e., let 𝑠𝑛𝑡(𝑠1) = {𝑠2}. Under the hypothesis that every 𝐿 ∈1 is 𝗂𝗇𝗍-𝗋𝗏-compliant it 
holds that ∀𝐿 ∈ 1 𝐿(𝑠2) ∈ ⃖⃖ ⃖𝑟𝑐(𝐿(𝑠1)), hence ∀𝜆 ∈ ↓

1(𝑠1) ∃𝜆
′ ∈ ↓

1(𝑠2) such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) and also ∀𝜆′ ∈↓
1(𝑠2) ∃𝜆 ∈↓

1(𝑠1) such that 

𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆), hence ↓
1(𝑠2) ∈𝑅𝐶𝐷(↓

1(𝑠1)) which implies ̃1
↓
(𝑠2) ∈𝑅𝐶𝐷(̃1

↓
(𝑠1)) given that ̃1

↓
(𝑠1) =↓

1(𝑠1) and ̃1
↓
(𝑠2) = ↓

1(𝑠2).
Consider now the case where |𝑠𝑛𝑡(𝑠1)| > 1 and let in this case 𝑠2 = 𝑠1. Under the hypothesis that every 𝐿 ∈ 1 is 𝗂𝗇𝗍-𝗋𝗏-compliant 

it holds that ∀𝐿 ∈ 1 ∃𝑠∗ ∈ 𝑆 such that (𝑠∗, 𝑠1) ∈ 𝗂𝗇𝗍 and 𝐿(𝑠∗) ∈ ⃖⃖ ⃖𝑟𝑐(𝐿(𝑠1)) (note that 𝑠∗ can vary across different labellings). By 
Definition 4.12, 𝐿(𝑠∗) ⪯ 𝐿̃(𝑠1) and hence by dual monotonicity of 𝗋𝗏 (see the first point of Definition 2.8) also 𝐿̃(𝑠1) ∈ ⃖⃖ ⃖𝑟𝑐(𝐿(𝑠1)). 
Since this holds for every labelling 𝐿 it follows as desired that ∀𝜆 ∈ ̃1

↓
(𝑠1) ∃𝜆′ ∈ ̃1

↓
(𝑠1) such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) and also ∀𝜆′ ∈ ̃1

↓
(𝑠1)

∃𝜆 ∈ ̃1
↓
(𝑠1) such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆). □

In the following definition we then consider the ‘extreme case’ of r-compatible dual of a set of labels with respect to a reinstatement 
violation relation.

Definition 4.17. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classified set of labels, and 𝗋𝗏 a reinstatement violation relation on 𝐶 . Given Λ1 ⊆Λ we define 
𝑀𝑅𝐶𝐷(Λ1) ≜

⋃
𝜆∈Λ1

𝑀𝑅𝐶(𝜆), where 𝑀𝑅𝐶(𝜆) ≜ {𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) ∣ ∄𝜆′′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) ∶ 𝜆′′ ≺ 𝜆′}.

Note that to ensure non-emptiness of 𝑀𝑅𝐶𝐷(Λ1) we need to assume that for every label 𝜆 ∈ Λ the set ⃖ ⃖⃖𝑟𝑐(𝜆) (which is non-empty 
by the third condition of Definition 2.8) includes a non-empty set of minimal elements with respect to the ⪯ relation. As indicated 
for the analogous assumption in Section 4.1, this obviously holds if Λ is finite and we regard it as a mild requirement otherwise.

Example 4.10. Continuing Example 4.9, with reference to 𝗋𝗏𝑐
𝐶3 , we have 𝑀𝑅𝐶(𝚘𝚞𝚝) = {𝚒𝚗} and 𝑀𝑅𝐶(𝚞𝚗𝚍) = {𝚞𝚗𝚍}. Hence 

𝑀𝑅𝐶𝐷(Λ1) = {𝚒𝚗, 𝚞𝚗𝚍}. With reference to 𝗋𝗏𝑐𝑓
𝐶3 we have 𝑀𝑅𝐶(𝚘𝚞𝚝) = {𝚒𝚗}, 𝑀𝑅𝐶(𝚞𝚗𝚍) = {𝚘𝚞𝚝}, hence 𝑀𝑅𝐶𝐷(Λ1) = {𝚒𝚗, 𝚘𝚞𝚝}.

The following propositions show two basic properties of 𝑀𝑅𝐶𝐷(Λ1): it belongs to 𝑅𝐶𝐷(Λ1) and is minimal with respect to ⪯𝑃 .

Proposition 4.14. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classified set of labels, and 𝗋𝗏 a reinstatement violation relation on 𝐶 . Then, for any non-empty 
Λ1 ⊆Λ it holds that 𝑀𝑅𝐶𝐷(Λ1) ∈𝑅𝐶𝐷(Λ1).

Proof. From the definition and the above mentioned assumption it is immediate to see that for every 𝜆 ∈ Λ1 ∃𝜆′ ∈𝑀𝑅𝐶𝐷(Λ1) such 
that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) and that for every 𝜆′ ∈𝑀𝑅𝐶𝐷(Λ1) ∃𝜆 ∈Λ1 such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆). □
22

10 We assume here a fixed choice operator for ̃1. The result holds for any actual instance of the operator.
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Proposition 4.15. Let 𝐶 be a 𝗌𝖺𝖼, Λ a 𝐶 -classified set of labels, and 𝗋𝗏 a reinstatement violation relation on 𝐶 . Given a non-empty Λ1 ⊆Λ, 
it holds that ∀𝐷 ∈𝑅𝐶𝐷(Λ1), 𝑀𝑅𝐶𝐷(Λ1) ⪯𝑃 𝐷.

Proof. For any 𝜆′ ∈𝐷, from Definition 4.16 it holds that ∃𝜆 ∈ Λ1 such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆). Then, by Definition 4.17 ∃𝜆′′ ∈𝑀𝐶𝐶𝐷(Λ1)
such that 𝜆′′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) and ∄𝜆′′′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) ∶ 𝜆′′′ ≺ 𝜆′′ which implies that 𝜆′′ ⪯ 𝜆′ since ⪯ is a total preorder by Proposition 2.1.

Consider now any 𝜆′′ ∈𝑀𝑅𝐶𝐷(Λ1). By Definition 4.17 it holds that ∃𝜆 ∈ Λ1 such that 𝜆′′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆). Moreover by Definition 4.16

∃𝜆′ ∈𝐷 such that 𝜆′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆). Now by Definition 4.17 we have again that ∄𝜆′′′ ∈ ⃖⃖ ⃖𝑟𝑐(𝜆) ∶ 𝜆′′′ ≺ 𝜆′′ and hence 𝜆′′ ⪯ 𝜆′. □

On this basis, we can now derive a necessary and sufficient condition for weak reinstatement preservation by a well-behaved 𝗌𝗌𝖿 .

Proposition 4.16. Let 𝐶 be a 𝗌𝖺𝖼, Λ1 and Λ2 two 𝐶 -classified 𝗌𝖺𝗅𝗌, and 𝗋𝗏 a well-founded reinstatement violation relation on 𝐶 . A well-

behaved and faithful 𝗌𝗌𝖿 𝗌𝗒𝗇 from Λ1 to Λ2 is weakly reinstatement preserving if and only if for every non-empty set Λ′
1 ⊆ Λ1 it holds that 

𝗌𝗒𝗇(Λ′
1) ∈ 𝑟𝑐(𝗌𝗒𝗇(𝑀𝑅𝐶𝐷(Λ′

1))).

Proof. Let 𝗌𝗒𝗇 be a 𝗌𝗌𝖿 satisfying the hypotheses and assume by contradiction that 𝗌𝗒𝗇 is not weakly reinstatement preserving. 
This means that there is a set 𝑆 equipped with an intolerance relation 𝗂𝗇𝗍 and a non-empty set  of 𝗂𝗇𝗍-𝗋𝗏-compliant Λ1-labellings 
of 𝑆 such that some labelling 𝐷𝐿

𝗌𝗒𝗇

̃
is 𝗂𝗇𝗍-𝗋𝗏-uncompliant. According to Definition 4.14 and Definition 4.12, this in turn leads to 

consider two cases: (i) ∃𝑠2 ∈ 𝑆 such that 𝑠2 is initial and min(𝐶)⊡𝐶Λ2
(𝐷𝐿

𝗌𝗒𝗇

̃
(𝑠2)); (ii) ∃𝑠2 ∈ 𝑆 such that 𝑠2 is not initial and ∀𝑠1 ∈ 𝑆

such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 it holds that 𝐷𝐿
𝗌𝗒𝗇

̃
(𝑠1)⊡𝐷𝐿

𝗌𝗒𝗇

̃
(𝑠2). Since, for any 𝑠, 𝐷𝐿

𝗌𝗒𝗇

̃
(𝑠) = 𝗌𝗒𝗇(̃↓(𝑠)), this condition is equivalent to 

𝗌𝗒𝗇(̃↓(𝑠1))⊡𝗌𝗒𝗇(̃↓(𝑠2)), i.e., 𝗌𝗒𝗇(̃↓(𝑠2)) ∉ 𝑟𝑐(𝗌𝗒𝗇(̃↓(𝑠1))).
As to (i), since 𝗌𝗒𝗇 is faithful we have that for any initial 𝑠2 ∈ 𝑆 it holds that ∃𝐿 ∈  such that 𝐶Λ1

(𝐿(𝑠2)) ⪯ 𝐶Λ2
(𝐷𝐿

𝗌𝗒𝗇

̃
(𝑠2)). Then, 

from min(𝐶)⊡𝐶Λ2
(𝐷𝐿

𝗌𝗒𝗇

̃
(𝑠2)) and the dual monotonicity of 𝗋𝗏 (i.e., the first condition of Definition 2.8) it follows min(𝐶)⊡𝐶Λ1

(𝐿(𝑠2)), 
which contradicts the hypothesis that every 𝐿 ∈  is 𝗂𝗇𝗍-𝗋𝗏-compliant.

As to (ii), from Proposition 4.13 we have that there exists 𝑠1 ∈ 𝑆 such that (𝑠1, 𝑠2) ∈ 𝗂𝗇𝗍 and ̃↓(𝑠1) ∈𝑅𝐶𝐷(̃↓(𝑠2)) and hence from 
Proposition 4.15 it holds that 𝑀𝑅𝐶𝐷(̃↓(𝑠2)) ⪯𝑃 ̃↓(𝑠1). Since 𝗌𝗒𝗇 is well-behaved, 𝗌𝗒𝗇(𝑀𝑅𝐶𝐷(̃↓(𝑠2))) ⪯ 𝗌𝗒𝗇(̃↓(𝑠1)). Moreover, by 
the hypothesis of this proposition (with Λ′

1 = ̃↓(𝑠2), which is non-empty) we have 𝗌𝗒𝗇(̃↓(𝑠2)) ∈ 𝑟𝑐(𝗌𝗒𝗇(𝑀𝑅𝐶𝐷(̃↓(𝑠2)))). However, 
by the dual monotonicity of 𝗋𝗏 (i.e., the first condition of Definition 2.8) it must be the case that 𝗌𝗒𝗇(̃↓(𝑠2)) ∈ 𝑟𝑐(𝗌𝗒𝗇(̃↓(𝑠1))), 
contradicting 𝗌𝗒𝗇(̃↓(𝑠2)) ∉ 𝑟𝑐(𝗌𝗒𝗇(̃↓(𝑠1))).

As to the other direction of the proof, assume now that 𝗌𝗒𝗇 is weakly reinstatement preserving. Since by Proposition 4.14 for every 
non-empty set Λ′

1 ⊆ Λ1 it holds that 𝑀𝑅𝐶𝐷(Λ′
1) ∈ 𝑅𝐶𝐷(Λ′

1), considering a simple situation where 𝑆 = {𝑠1, 𝑠2} and 𝗂𝗇𝗍 = {(𝑠1, 𝑠2)}
(note that in this case 𝑆 = 𝑆 and 𝗂𝗇𝗍 = 𝗂𝗇𝗍) we can identify an 𝗂𝗇𝗍-𝗋𝗏-compliant set 1 of Λ1-labellings such that ↓

1(𝑠2) = Λ′
1 and 

↓
1(𝑠1) =𝑀𝑅𝐶𝐷(Λ′

1). Then since 𝗌𝗒𝗇 is weakly reinstatement preserving it must also hold that 𝗌𝗒𝗇(Λ′
1) ∈ 𝑟𝑐(𝗌𝗒𝗇(𝑀𝑅𝐶𝐷(Λ′

1))). □

4.5. Comparing synthesis functions for argument justification

Exploiting the general results obtained above, we can now turn back to the analysis of synthesis functions for argument justification 
and, in particular, compare 𝗌𝗒𝗇AJ, corresponding to the traditional notion of argument justification, with the novel proposal of 𝗌𝗒𝗇′AJ

introduced in Section 4.2.

We already know from Proposition 4.6 that 𝗌𝗒𝗇AJ is well-behaved and from the simple counterexample provided in Section 4.2

that it is not faithful. The following propositions show that 𝗌𝗒𝗇′AJ satisfies both properties.

Proposition 4.17. The 𝗌𝗌𝖿 𝗌𝗒𝗇′AJ is well-behaved.

Proof. As in the proof of Proposition 4.6, since the strict order ≺ induced on Λ′AJ is total, it is sufficient to show that for any two non-

empty sets Λ1, Λ2 ⊆ΛIOU whenever 𝗌𝗒𝗇′AJ(Λ1) ≺ 𝗌𝗒𝗇′AJ(Λ2) it does not hold that Λ2 ⪯𝑃 Λ1. First, consider the case 𝗌𝗒𝗇′AJ(Λ2) = 𝖲𝗄𝖩, 
entailing Λ2 = {𝚒𝚗} and, since 𝗌𝗒𝗇′AJ(Λ1) ≺ 𝗌𝗒𝗇′AJ(Λ2), Λ1 ≠ {𝚒𝚗}. Then, it is easy to see that {𝚒𝚗} 𝑃 Λ1 for any Λ1 ⊆ ΛIOU, with 
Λ1 ∉ {∅, {𝚒𝚗}}. Consider now the case 𝗌𝗒𝗇′AJ(Λ2) ∈ {𝖶𝖭𝗈𝖩, 𝖢𝗋𝖩}, entailing 𝗌𝗒𝗇′AJ(Λ1) = 𝖲𝖭𝗈𝖩 and thus Λ1 = {𝚘𝚞𝚝}. It is also easy to 
see that for any Λ2 ⊆ΛIOU, with Λ2 ∉ {∅, {𝚘𝚞𝚝}} it holds that Λ2 𝑃 {𝚘𝚞𝚝}. The conclusion follows from the fact that Λ2 is non-empty 
and different from {𝚘𝚞𝚝}, since 𝗌𝗒𝗇′AJ(Λ2) ≠ 𝖲𝖭𝗈𝖩. Finally, the case 𝗌𝗒𝗇′AJ(Λ2) = 𝖲𝖭𝗈𝖩 is impossible if 𝗌𝗒𝗇′AJ(Λ1) ≺ 𝗌𝗒𝗇′AJ(Λ2), since 
there is no label strictly lower than 𝖲𝖭𝗈𝖩. □

Proposition 4.18. The 𝗌𝗌𝖿 𝗌𝗒𝗇′AJ is faithful.

Proof. We need to show that for every ∅ ⊊ Λ ⊆ ΛIOU ∃𝑐 ∈ {𝐶3
ΛIOU

(𝜆) ∣ 𝜆 ∈ Λ} ∶ 𝐶3
Λ′AJ

(𝗌𝗒𝗇′(Λ)) ≤ 𝑐 and ∃𝑐′ ∈ {𝐶3
ΛIOU

(𝜆) ∣ 𝜆 ∈ Λ} ∶
𝑐′ ≤ 𝐶3

Λ′AJ
(𝗌𝗒𝗇′(Λ)). For Λ = {𝚒𝚗} we have 𝗌𝗒𝗇′AJ(Λ) = 𝖲𝗄𝖩 and 𝐶3

Λ′AJ
(𝖲𝗄𝖩) = 𝗉𝗈𝗌 = 𝐶3

ΛIOU
(𝚒𝚗). For Λ = {𝚘𝚞𝚝} we have 𝗌𝗒𝗇′AJ(Λ) =

𝖲𝖭𝗈𝖩 and 𝐶3
Λ′AJ

(𝖲𝖭𝗈𝖩) = 𝗇𝖾𝗀 = 𝐶3
ΛIOU

(𝚘𝚞𝚝). For any other Λ it holds that 𝐶3
Λ′AJ

(𝗌𝗒𝗇′AJ(Λ)) = 𝗆𝗂𝖽 and it is easy to see that either 
23

𝚞𝚗𝚍 ∈Λ with 𝐶3
ΛIOU

(𝚞𝚗𝚍) =𝗆𝗂𝖽 or Λ = {𝚒𝚗, 𝚘𝚞𝚝} with 𝐶3
ΛIOU

(𝚒𝚗) = 𝗉𝗈𝗌 >𝗆𝗂𝖽 and 𝐶3
ΛIOU

(𝚘𝚞𝚝) = 𝗇𝖾𝗀 <𝗆𝗂𝖽. □
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Table 2

Illustration of the proof of Proposition 4.19.

Λ1 inc
𝐶3 𝗂𝗇𝖼𝑎

𝐶3 𝗂𝗇𝖼𝑐
𝐶3

𝗌𝗒𝗇′AJ(Λ1)

{𝚒𝚗} {𝚞𝚗𝚍} {𝚞𝚗𝚍} {𝚘𝚞𝚝}
𝖲𝗄𝖩 𝖶𝖭𝗈𝖩 𝖶𝖭𝗈𝖩 𝖲𝖭𝗈𝖩

{𝚘𝚞𝚝} {𝚒𝚗} {𝚒𝚗} {𝚒𝚗}
𝖲𝖭𝗈𝖩 𝖲𝗄𝖩 𝖲𝗄𝖩 𝖲𝗄𝖩

{𝚞𝚗𝚍} {𝚒𝚗} {𝚞𝚗𝚍} {𝚞𝚗𝚍}
𝖶𝖭𝗈𝖩 𝖲𝗄𝖩 𝖶𝖭𝗈𝖩 𝖶𝖭𝗈𝖩

{𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚞𝚗𝚍} {𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖶𝖭𝗈𝖩 𝖶𝖭𝗈𝖩

{𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍}
𝖶𝖭𝗈𝖩 𝖲𝗄𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍} {𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

We can now see that, like 𝗌𝗒𝗇AJ, also 𝗌𝗒𝗇′AJ is consistency preserving.

Proposition 4.19. The 𝗌𝗌𝖿 𝗌𝗒𝗇′AJ is consistency preserving according to the incompatibility relations inc𝐶3 , 𝗂𝗇𝖼𝑎
𝐶3 , and 𝗂𝗇𝖼𝑐

𝐶3 while it is not 
according to 𝗂𝗇𝖼𝐶3 .

Proof. We need to show that for every non-empty set Λ1 ⊆ΛIOU it holds that 𝗌𝗒𝗇′AJ(𝑀𝐶𝐶𝐷(Λ1)) ∈ 𝑐𝑐(𝗌𝗒𝗇′AJ(Λ1)). Similarly to the 
proof of Proposition 4.7, for inc𝐶3 , 𝗂𝗇𝖼𝑎

𝐶3 , and 𝗂𝗇𝖼𝑐
𝐶3 this is illustrated in Table 2, where the first column presents the various possible 

cases for Λ1 with the relevant value of 𝗌𝗒𝗇′AJ(Λ1) and the following columns (illustrating inc𝐶3 , 𝗂𝗇𝖼𝑎
𝐶3 , and 𝗂𝗇𝖼𝑐

𝐶3 respectively) show 
the corresponding 𝑀𝐶𝐶𝐷(Λ1) and the relevant value of 𝗌𝗒𝗇′AJ(𝑀𝐶𝐶𝐷(Λ1)).

By inspection of the table, it can be checked that, as desired, for every pair (𝗌𝗒𝗇′AJ(Λ1), 𝗌𝗒𝗇′AJ(𝑀𝐶𝐶𝐷(Λ1))) obtained by taking 
the first element from a row of the first column, and the second element from any other cell (say the 𝑖-th with 𝑖 ∈ {2, 3, 4}) of the 
same row it holds that (𝗌𝗒𝗇′AJ(Λ1), 𝗌𝗒𝗇′AJ(𝑀𝐶𝐶𝐷(Λ1))) ∉ 𝗂𝗇𝖼′ where 𝗂𝗇𝖼′ is the incompatibility relation induced by the 𝗂𝗇𝖼 relation 
specified at the top of the 𝑖-th column (from which the second element of the pair was taken).

Concerning 𝗂𝗇𝖼𝐶3 , exactly as in the case of 𝗌𝗒𝗇AJ a counterexample is provided by Λ1 = {𝚒𝚗, 𝚘𝚞𝚝} with 𝑀𝐶𝐶𝐷(Λ1) = {𝚒𝚗, 𝚘𝚞𝚝}
and 𝗌𝗒𝗇′AJ(Λ1) = 𝗌𝗒𝗇′AJ(𝑀𝐶𝐶𝐷(Λ1)) = 𝖢𝗋𝖩 while (𝗆𝗂𝖽, 𝗆𝗂𝖽) ∈ 𝗂𝗇𝖼𝐶3 . □

Turning now to weak reinstatement preservation, we already know from Example 4.6 that 𝗌𝗒𝗇AJ is not reinstatement preserving 
for the reinstatement violation relations 𝗋𝗏𝑐𝑓

𝐶3 and 𝗋𝗏𝑐
𝐶3 . Since in the argumentation framework used in the example all arguments 

have exactly one attacker, in this case reinstatement preservation coincides with weak reinstatement preservation and hence we get 
that 𝗌𝗒𝗇AJ is also not weakly reinstatement preserving.

Instead 𝗌𝗒𝗇′AJ turns out to be satisfactory from this viewpoint.

Proposition 4.20. The 𝗌𝗌𝖿 𝗌𝗒𝗇′AJ is weakly reinstatement preserving for the reinstatement violation relations 𝗋𝗏𝑐𝑓
𝐶3 and 𝗋𝗏𝑐

𝐶3 .

Proof. We need to show that for every non-empty set Λ1 ⊆ΛIOU it holds that 𝗌𝗒𝗇′AJ(Λ1) ∈ 𝑟𝑐(𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷(Λ1))). This is illustrated 
in Table 3, where the first column presents the various possible cases for Λ1 with the relevant value of 𝗌𝗒𝗇′AJ(Λ1) and the following 
columns (illustrating 𝗋𝗏𝑐𝑓

𝐶3 and 𝗋𝗏𝑐
𝐶3 respectively) show the corresponding 𝑀𝑅𝐶𝐷(Λ1) and the relevant value of 𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷(Λ1)).

By inspection of Table 3, it can be checked that, as desired, for every pair (𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷(Λ1)), 𝗌𝗒𝗇′AJ(Λ1)) obtained by tak-

ing the second element from a row of the first column, and the first element from any other cell of the same row it holds 
that (𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷(Λ1)), 𝗌𝗒𝗇′AJ(Λ1)) ∉ 𝗋𝗏′ where 𝗋𝗏′ is the reinstatement violation relation induced by the 𝗋𝗏 relation speci-

fied at the top of the column from which the first element of the pair was taken. For instance, considering the sixth row, the 
second column indicates that, with respect to 𝗋𝗏𝑐𝑓

𝐶3 , 𝑀𝑅𝐶𝐷({𝚒𝚗, 𝚞𝚗𝚍}) = {𝚘𝚞𝚝}. Then 𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷({𝚒𝚗, 𝚞𝚗𝚍})) = 𝖲𝖭𝗈𝖩 while 

𝗌𝗒𝗇′AJ({𝚒𝚗, 𝚞𝚗𝚍}) = 𝖢𝗋𝖩, and (𝖲𝖭𝗈𝖩, 𝖢𝗋𝖩) ∉ 𝗋𝗏𝑐𝑓
𝐶3

′
since (𝗇𝖾𝗀, 𝗆𝗂𝖽) ∉ 𝗋𝗏𝑐𝑓

𝐶3 . The third column of the same row indicates that, with re-

spect to 𝗋𝗏𝑐
𝐶3 , 𝑀𝑅𝐶𝐷({𝚒𝚗, 𝚞𝚗𝚍}) = {𝚞𝚗𝚍, 𝚘𝚞𝚝}. Then in this case 𝗌𝗒𝗇′AJ(𝑀𝑅𝐶𝐷({𝚒𝚗, 𝚞𝚗𝚍})) =𝖶𝖭𝗈𝖩 and (𝖶𝖭𝗈𝖩, 𝖢𝗋𝖩) ∉ 𝗋𝗏𝑐

𝐶3
′ since 
24

(𝗆𝗂𝖽, 𝗆𝗂𝖽) ∉ 𝗋𝗏𝑐
𝐶3 . □
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Table 3

Illustration of the proof of Proposition 4.20.

Λ1 𝗋𝗏𝑐𝑓
𝐶3 𝗋𝗏𝑐

𝐶3

𝗌𝗒𝗇′AJ(Λ1)

{𝚒𝚗} {𝚘𝚞𝚝} {𝚘𝚞𝚝}
𝖲𝗄𝖩 𝖲𝖭𝗈𝖩 𝖲𝖭𝗈𝖩

{𝚘𝚞𝚝} {𝚒𝚗} {𝚒𝚗}
𝖲𝖭𝗈𝖩 𝖲𝗄𝖩 𝖲𝗄𝖩

{𝚞𝚗𝚍} {𝚘𝚞𝚝} {𝚞𝚗𝚍}
𝖶𝖭𝗈𝖩 𝖲𝖭𝗈𝖩 𝖶𝖭𝗈𝖩

{𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍} {𝚘𝚞𝚝} {𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖲𝖭𝗈𝖩 𝖶𝖭𝗈𝖩

{𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍}
𝖶𝖭𝗈𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

{𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝} {𝚒𝚗,𝚘𝚞𝚝} {𝚒𝚗,𝚞𝚗𝚍,𝚘𝚞𝚝}
𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

Table 4

Illustration of weak reinstatement preservation in the case of 
𝐴𝐹2 .

𝛼 𝛽 𝛾 𝛿 𝜖 𝛾̂

𝐿1 𝚞𝚗𝚍 𝚞𝚗𝚍 𝚞𝚗𝚍 𝚘𝚞𝚝 𝚒𝚗 𝚞𝚗𝚍

𝐿2 𝚒𝚗 𝚘𝚞𝚝 𝚘𝚞𝚝 𝚒𝚗 𝚘𝚞𝚝 𝚒𝚗

𝐷𝐿𝗌𝗒𝗇′

̃
𝖢𝗋𝖩 𝖶𝖭𝗈𝖩 𝖶𝖭𝗈𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩 𝖢𝗋𝖩

Example 4.11. To exemplify the above result, referring again to the case of 𝐴𝐹𝑓𝑑 from Example 4.7 and in particular to the set of 
labellings ̃ = {𝐿1, ̃𝐿2} as introduced in Section 4.3, letting 𝐿′ = 𝐷𝐿

𝗌𝗒𝗇′

̃
, we have 𝐿′(𝛼) = 𝐿′(𝛽) = 𝖢𝗋𝖩, 𝐿′(𝛾) = 𝖲𝖭𝗈𝖩, 𝐿′(𝛾̂) = 𝖲𝗄𝖩

with the label of 𝐿′(𝛾̂) ensuring reinstatement compliance.

Turning to 𝐴𝐹2 = ⟨, →⟩ as defined in Example 4.6, the only argument with more than one attacker is 𝛾 , leading to ̃ =
{𝛼, 𝛽, 𝛾, 𝛿, 𝜖, ̂𝛾} and →̃ = {(𝛼, 𝛽), (𝛾, 𝛼), (𝛾, 𝛾), (𝛿, 𝛾), (𝛿, 𝜖), (𝜖, 𝛿), (𝛾̂ , 𝛾)}. We have then the set of labellings ̃ = {𝐿1, ̃𝐿2} and the ar-

gument justification labelling 𝐷𝐿
𝗌𝗒𝗇′

̃
as illustrated in Table 4, which shows that the problem of reinstatement preservation pointed 

out for 𝐴𝐹2 in Example 4.6 is solved.

5. Discussion and related works

We have presented a generalized treatment of the notions of consistency and reinstatement and shown its application in the context 
of formal argumentation. Accordingly, the discussion of the related works includes both general considerations and more specific 
aspects concerning the argumentation field, and is then complemented by some preliminary perspectives on further applications of 
the proposed formalism.

5.1. Labelling-based assessments

Our proposal is based on the generic notion of an ordered assessment, virtually of any kind, based on labellings. Labellings play a 
specific role in formal argumentation where they are at the heart of the labelling-based approach to abstract argumentation semantics 
[8] and, more generally, can be used to capture various phases of an argumentative reasoning process [18].

Concerning argumentation semantics, we focused on tripolar labellings, which are the most commonly adopted ones for argument 
acceptability assessments, as discussed in Section 3. Quadripolar labellings have also been introduced in the argumentation literature 
(see, for instance, [13,19]) and will be considered in future work.

As to argument justification, we considered the three traditional labels recalled in Definition 4.1 as a starting point and proposed, 
as an improvement, a set of four labels in Section 4.2. In the literature alternative (and more articulated) notions of argument 
justification have been considered too. For instance, in [20], a classification encompassing four states is proposed, namely: uni-

accepted (corresponding to traditional skeptical justification), not-accepted (corresponding to traditional no-justification), cleanly-

accepted and only-exi-accepted. The two latter states refine the traditional notion of credulous justification, while our proposal 
refines the notion of no-justification. In [21], in the context of the study of skepticism relations between argumentation semantics, 
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seven possible argument justification states were identified, corresponding to all non-empty subsets of ΛIOU, namely to the possible 
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alternatives of ↓(𝛼) given an argument 𝛼 and a set  of ΛIOU-labellings. Essentially the same kind of argument justification labelling 
has been independently proposed in [22]. Encompassing these more articulated proposals into our approach is left to future work.

Throughout the paper, we mainly referred to discrete sets of labels, traditionally used in argumentation. The use of different sets 
of labels for different assessments (e.g., argument acceptability vs. argument justification) motivated the need for a set of assessment 
classes on top of the various sets of labels.

We remark that the proposed notions are not limited to this context. In particular, nothing prevents real-valued labels and the 
use of infinite sets of labels, such as the [0, 1] real interval. Putting in correspondence such a set with a tripolar evaluation has been 
considered in some works in the literature (see, for instance, the notion of epistemic labelling in [23] or the labellings considered 
in the equational approach of [24]). However, we remark that our approach is not restricted to the use of finite sets of assessment 
classes, nor imposes that the sets of labels and the set of assessment classes are different if this is not necessary. In contexts where 
the [0, 1] real interval is uniformly used as the set of labels Λ for various assessments, it can also be used as the 𝗌𝖺𝖼 𝐶 with 𝐶Λ being 
the identity function. Further developments in this direction are left to future work, while some related comments can be found in 
Section 5.4.

5.2. Notions of consistency and reinstatement

Our proposal encompasses a combination of the notions of consistency and reinstatement. Consistency is a ubiquitous term used 
in a variety of technical and non-technical contexts to indicate a desirable property, with various possible and somehow interrelated 
intuitive meanings like coherence, stability, firmness, harmony.

Within this broad landscape, we focus on consistency of labellings, which, borrowing terminology from [25,14], can be regarded 
as a form of direct consistency, in the sense that, given a set of elements, their (in)consistency can be verified by a direct check on 
the elements themselves and their attributes. For instance, given a language equipped with negation, a set of language elements is 
consistent if it does not include two elements such that one negates the other, which corresponds to the traditional view of consistency 
as explicit non-contradiction.

In addition to the traditional notion of negation, a more general, not necessarily symmetric, notion of contrariness is adopted in 
some approaches. For instance, in the ASPIC+ formalism [14], a language equipped with contrariness is considered, and a set of 
language elements is directly consistent if it does not include two elements such that one is a contrary of the other.

Our approach provides an abstract formalism to represent arbitrary forms of direct consistency and analyzes some of their prop-

erties (in particular preservation) in general terms.

It can be observed that the notions of consistency mentioned above are special cases of our approach, where a binary labelling 
is implicitly considered (with set membership corresponding to a positive label, and non-membership to a negative one) and the 
intolerance relation corresponds to negation or contrariness. The binary assessments, as the ones above, correspond to a bipolar 𝗌𝖺𝖼
𝐶 , which then necessarily consists of its minimal and maximal elements only: 𝐶 = {min(𝐶), max(𝐶)}. Then, the requirement of well-

foundedness leaves no room for alternatives in the definition of the incompatibility relation 𝗂𝗇𝖼 to be adopted, since (max(𝐶), max(𝐶))
must belong to 𝗂𝗇𝖼 and no other pair can belong to 𝗂𝗇𝖼.

This observation explains why the notions of intolerance and incompatibility considered in this paper as essential ingredients of 
(in)consistency need not an explicit treatment in contexts based on bipolar labellings, where the only possible choice for these notions 
is, so to say, hardwired in the adopted formalisms. In turn, the habit of having these notions implicit in traditional bipolar contexts 
may explain why they did not receive explicit attention even in contexts, like formal argumentation, where they can play a useful 
and possibly enlightening role, as discussed in this paper.

We suggest that the ideas underlying our proposal have the potential to capture, as special cases, a large spectrum of direct 
consistency notions in a variety of domains, enabling the study of alternative options and revealing relationships with other notions, 
as we have done in Sections 3 for abstract argumentation semantics. Investigating the application of the approach in other contexts 
is a direction of future work, for which we provide some perspectives in Section 5.7.

Turning to indirect consistency notions, they can be regarded, in general terms, as involving some inferential activity carried out on 
a set of elements, whose outcomes reveal whether the set is consistent. Trivialization and unfeasibility, in addition to contradiction, 
are typical examples of inconsistency-revealing properties. For instance, in classical logic, a set 𝑆 of formulas is inconsistent if every 
formula is a consequence of 𝑆 . In contrast, in constraint-based reasoning, a set of constraints is inconsistent (or unfeasible) if no 
variable assignment satisfying all the constraints exists.

Indirect consistency is, in principle, more general than direct consistency and, as in the case of constraints, may refer to cases 
where no assessment labellings are involved and hence out of the scope of the present work. There are however many significant 
cases where indirect and direct consistency are related. For instance, deriving any formula is regarded as pathological because it is 
assumed that the set of all formulas is directly inconsistent, i.e., includes elements that cannot stay together (in particular, because the 
language includes negation). If this were not the case, deriving all formulas might not be considered problematic per se. Even more 
explicitly, in [14], indirect consistency is defined in terms of direct consistency: a set of language elements is indirectly consistent if 
its closure under strict rules is directly consistent. While an extensive discussion of the spectrum of the notions of (in)consistency is 
beyond the limits of the present paper (see, for instance, [26] for a broad analysis), we regard the investigation of relations between 
generalized direct and indirect notions of consistency as a promising direction of future work.

Compared with consistency, the notion of reinstatement has a narrower focus: it arises in the context of defeasible reasoning [27]

based on the idea that provisional prima facie reasons to believe some conclusion are subject to be retracted in presence of defeaters, 
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namely of other reasons attacking them in some way. Defeaters may be defeated since they may be based in turn on prima facie
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reasons. Then, the idea is that a provisional reason whose defeaters are defeated is reinstated, namely, recovers its ability to support 
some belief.

The idea of reinstatement is embedded in several abstract argumentation semantics, and, in this context, it has been formalized 
as the reinstatement principle in [10], which in the labelling-based formulation corresponds to the requirement that if all the attackers 
of an argument 𝛼 are labelled 𝚘𝚞𝚝 then the argument 𝛼 should be labelled 𝚒𝚗. In the context of formal argumentation, the notion 
of reinstatement has received significant attention, including debates on its appropriateness [28,29] and the definition of variants 
like weak reinstatement and CF-reinstatement in [10], in any case focusing on the notion of defense, i.e., of attackers being attacked. 
In the context of labelling-based semantics, the idea was first developed in [9], where the term reinstatement labelling refers to 
an equivalent formulation of the notion of complete labelling. Our proposal provides a related but complementary perspective on 
the notion of reinstatement, connected to the need not to be too conservative in deriving conclusions. This perspective, besides 
supporting the definition of different and tunable reinstatement requirements, enables the use of this notion outside its native context 
and suggests a potential reappraisal of its role as a basic ingredient for the characterization of reasoning activities of various natures.

Regarding the problem of assessing the quality of the outcomes of some reasoning process, consistency and reinstatement can 
be regarded as two sides of the same coin. On the one hand, consistency can be related to the ability of the process to avoid the 
presence of defects in its outcomes; on the other hand, reinstatement can be associated with the productivity of the process itself. 
At one extreme, the empty set of outcomes cannot include defects and is consistent, but it is not a very productive outcome. On 
the other hand, a process that outputs all possible outcomes corresponds to the maximum productivity in quantitative terms but is 
also guaranteed to include all possible defects and hence be inconsistent. Both extremes are equally uninformative, and a suitable 
tradeoff between them has to be found. In this respect, the generalized notion of reinstatement we propose needs not to be confined 
to nonmonotonic reasoning but is applicable in any context where a reasoning process admits a range of outcomes.

As anticipated in the introduction, consistency establishes a sort of upper bound of the range, while reinstatement is a sort of 
lower bound, and their combination determines the subrange of the outcomes considered appropriate in a given situation or domain. 
While this paper has illustrated this idea in the context of formal argumentation, a stimulating direction of future work consists in 
exploring its use in other settings encompassing some forms of non-bipolar labellings, like, for instance, many-valued logics [30].

5.3. Argumentation semantics and argument justification

We have shown in Section 3 that the generalized notions of consistency and reinstatement provide a novel characterization of 
some well-known argumentation semantics, and we commented that the characterization carries over to semantics which correspond 
to imposing some minimality or maximality constraints on complete labellings.

Other argumentation semantics in the literature are defined by referring to some topological features and modifications of the 
argumentation framework. For instance, CF2 [31] and stage2 [32] semantics are based on the topological notion of strongly connected 
components of the graph corresponding to the argumentation framework, while the recent notion of weak admissibility [33] (which 
provides the basis for reformulating other semantics notions too) is based on the notion of reduct of an argumentation framework 
with respect to a set of arguments 𝑆 (this amounts to consider a modified framework where 𝑆 and the arguments attacked by 𝑆
are deleted). While these more articulated schemes of semantics definition appear to be beyond the expressive capabilities of the 
generalized notions of consistency and reinstatement, it will be interesting to investigate how they can be integrated within such 
schemes to capture some existing semantics or possibly devise new ones.

We focused in this paper on Dung’s argumentation frameworks based on the relation of attack. It is worth recalling, however, that 
forms of argumentation frameworks, including other kinds of relations, have been considered in the literature. For instance, bipolar 
argumentation frameworks [34] also involve a relation of support, while Abstract Dialectical Frameworks [35] allow to express a 
variety of kinds of influences between arguments. In our approach, consistency and reinstatement refer to an intolerance relation, 
which corresponds intuitively to some form of conflict; exploring the definition of dual notions referring to some form of support, 
and possibly to more heterogeneous relations, appears to be a further research line worth pursuing.

5.4. Gradual notions of consistency in argumentation

In argumentation literature, several works have considered variations of the notion of consistency. In Weighted Argument Systems 
[36], the idea is to assign to each attack in an argumentation framework a positive real number representing its weight. This weight 
indicates intuitively the strength of the attack: a stronger attack suggests a higher level of inconsistency between the attacker and the 
attacked arguments.

This gives rise to the notion of inconsistency budget, namely the amount of inconsistency one is ready to tolerate in a set of 
arguments that are accepted altogether. Traditional Dung’s semantics, requiring conflict-freeness, correspond to an inconsistency 
budget of zero, while this proposal allows the inclusion in the same extension, i.e., a set of arguments labelled 𝚒𝚗, of some pairs of 
conflicting arguments as far the sum of the relevant attack weights does not exceed the inconsistency budget. This proposal differs 
from ours in two main respects. First, it refers to evaluating inconsistency in the attack weights rather than in the labels assigned to 
arguments. Second, the inconsistency budget represents a global constraint at the level of the argumentation framework, while our 
proposal focuses on local constraints at the level of pairs of arguments.

The approach in [36] can be regarded as orthogonal to ours and the study of possible integration between local and global 
inconsistency constraints represents an interesting direction for future work. A similar comment applies to fuzzy argumentation 
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frameworks as defined in [37], where a degree is assigned to each attack and these degrees play a role in the definitions of parametric 
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semantics notions (like conflict-freeness and admissibility) based on fuzzy sets of arguments. In our context, this idea would correspond 
to considering a fuzzy intolerance relation, which is beyond the scope of the present paper and reserved for future work.

Forms of argumentation where gradual assessments are attached to arguments only can be put in more direct connection with 
our approach. For instance, in several literature proposals, arguments are labelled with a value in the [0, 1] interval, with different 
possible interpretations like fuzzy acceptability degrees [38], epistemic probabilities [23], or strength [39]. Denoting as 𝑣(𝛼) the value 
assigned to an argument 𝛼 and letting 𝛼 and 𝛽 be two arguments such that 𝛼 attacks 𝛽, a common consistency constraint considered 
in this context (called coherence in [23]) is that 𝑣(𝛽) ≤ 1 − 𝑣(𝛼). In our terminology, this corresponds to a specific incompatibility 
relation on [0, 1] where values 𝑥 and 𝑦 are incompatible whenever 𝑥 + 𝑦 > 1. As a small note, we observe that expressing this kind 
of constraint through numerical inequalities enforces the corresponding incompatibility relation to be symmetric, while our generic 
formulation also allows for asymmetric incompatibility in numerical settings, where appropriate.

Properties related to the idea of reinstatement are present in gradual settings too. In particular, in [39] it is shown that if a 
gradual semantics satisfies a set of basic principles (called Independence, Circumscription, Neutrality, and Maximality) then it satisfies 
a numerical counterpart (let us call it n-reinstatement) of the property stated in Definition 3.4, namely if for every attacker 𝛼 of 
an argument 𝛽 it holds that 𝑣(𝛼) = 0 then it must hold that 𝑣(𝛽) = 1. The same property is also considered in [23]: an epistemic 
probability is said to be optimistic if for every argument 𝛽 it holds that 𝑣(𝛽) ≥ 1 −

∑
𝛼∈𝛽− 𝑣(𝛼). This condition, which directly implies 

n-reinstatement, refers collectively to the set of attackers.

As the above examples indicate, applying our approach to gradual argumentation shows promise of high potential and deserves to 
be investigated in future work. In particular, a study of the relationships with the rich corpus of principles for gradual argumentation 
[39,16,40,17] proposed in the literature is envisaged. Moreover, it can be remarked that the notions introduced in Section 2 do not 
make any commitment on the nature of the labelled entities and of the intolerance relation, hence applying the approach at the level 
of sets of arguments, as it may be required to capture properties like optimism in [23], does not pose specific problems and appears 
a natural development to pursue.

5.5. Consistency and reinstatement preservation

The issue of preserving desirable properties (like consistency or reinstatement) of some reasoning outcomes arises when a reasoning 
process consists of multiple stages where the outcomes of later stages are derived from those of the earlier ones. In particular, 
argumentative processes naturally lend themselves to a description in terms of reasoning stages or layers (see, for instance, [8,6]), and 
a relevant formal model called multi-labelling systems has been introduced in [18]. We have discussed consistency and reinstatement 
preservation concerning the stage of derivation of argument justification status, and, to the best of our knowledge, this kind of analysis 
has not been considered before in the argumentation literature.

It can be remarked, however, that the rationality postulates introduced in [25] can be regarded as introducing consistency preser-

vation requirements concerning the assessment of the conclusions of arguments. In particular, the postulate of direct consistency

requires that (i) for each labelling11 the set of supported conclusions, namely the conclusions of arguments labelled 𝚒𝚗, is consistent 
and (ii) the set of justified conclusions, namely the intersection of the sets of supported conclusions of all labellings, is consistent. It 
is proved that, under suitable conditions, (i) implies (ii), which can be considered a form of consistency preservation when moving 
from individual labellings to skeptically accepted conclusions. The postulate of indirect consistency concerns the closure under strict 
rules of a set of conclusions 𝑆 , namely the set obtained adding to 𝑆 all the conclusions that can be further derived by applying rules 
which are certain and do not admit exceptions, i.e., all the conclusions which follow necessarily from 𝑆 . The postulate, analogously 
to the above one, requires that (i) for each labelling, the closure under strict rules of the set of supported conclusions is consistent, 
and (ii) the closure under strict rules of the set of justified conclusions is consistent. This requirement can be regarded as a form of 
consistency preservation concerning the stage of closure under strict rules. Moreover, also in this case it is proved that (i) implies (ii).

Our approach makes explicit and generalizes the notion of consistency preservation in abstract terms and complements it with the 
one of reinstatement preservation. In this context, we have provided some novel general results and analyzed the case of preservation 
in argument justification. Extending in general terms the study of property preservation to argument conclusions in the spirit of 
[25] requires further analyses and is an important direction of future work, which we plan to develop leveraging the multi-labelling 
approach introduced in [18] and taking into account the recent studies on claim-augmented argumentation frameworks [41–43].

5.6. Impossibility of reinstatement preservation

We have shown that reinstatement preservation is generally impossible, providing a counterexample related to the case of floating 
defeat. Conceptually this can be regarded as related to the impossibility result discussed in [44,45] where, rephrasing the result in 
our context, it is shown that equating skeptical acceptance of a conclusion to skeptical acceptance of at least an argument supporting 
it fails to provide the desired outcomes in the presence of floating defeat. Our result shows that problems appear at the argument 
justification level too, using any synthesis function satisfying some basic requirements.

Floating defeat and floating conclusions have been the subject of significant debates [46,29] concerning controversial examples 
from an intuitive point of view and then involving the underlying reasoning principles and modelling assumptions. In [46], it is 

11 The rationality postulates are defined in [25] with reference to the extension-based formulation of abstract argumentation semantics. We provide here an equivalent 
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description in terms of labellings.
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suggested that a possible way out of the controversies would be ‘placing statements into several categories, depending on the degree 
to which they are supported by a set of premises, with floating conclusions then classified, not necessarily as unsupported, but perhaps 
only as less firmly supported than statements that are justified by the same argument in every extension.’ In a similar vein, in [47], 
it is observed that ‘some of the different consequence notions are not mutually exclusive but can be used in parallel, as capturing 
different senses in which belief in a proposition can be supported by a body of information’ and it is remarked that ‘in general the 
existence of different definitions is not a problem for, but a feature of the field of defeasible argumentation’. Considering explicitly 
a spectrum of notions of consistency and reinstatement and revising the notion of justification status, as proposed in this paper, is 
coherent with these indications and provides a basis for further developments.

While only weak reinstatement preservation can be achieved in general, there are cases where ‘full’ reinstatement preservation 
holds, and it will be interesting to investigate in future work some conditions under which the stronger property can be ensured. It is 
interesting to note that these conditions may either refer to the intolerance relation or the evaluation method. As to the former, we 
already commented that if the cardinality of the set of intolerant elements can be at most 1 (a very restrictive condition) ‘full’ and 
weak reinstatement preservation coincide. As to the latter, Proposition 4.8 has shown that faithfulness is a sufficient condition for 
assessments consisting of precisely one labelling (as in the case of grounded semantics for abstract argumentation). The identification 
of further less restrictive conditions on either side will be pursued in future work.

To introduce a weakened, generally viable notion of reinstatement preservation, we resorted to a transformation where an addi-

tional virtual element is included as a proxy of the set of intolerant elements when this is not a singleton. Transformations involving 
the addition of virtual arguments and relevant attacks have been considered in abstract argumentation (e.g., to convert frameworks 
with higher-order attacks into conventional ones, as in [48,49]); however, to the best of our knowledge, the transformation we pro-

pose has no direct counterpart in the literature. In particular, while the virtual element corresponds to a set of attackers, its meaning 
is distinct from the notions of joint attack from a set of arguments [50], which, differently from ours, is based on a conjunctive 
interpretation, i.e., requires that all elements of the set are accepted for the set-attack to be valid.

While conceived as a technical device for a specific problem, we suggest that virtual elements may also play a role in explaining 
the outcomes of argumentative assessments, a subject that is receiving increasing attention in the literature [51]. In argumentation 
frameworks, virtual elements provide a synthetic view of the status of the set of attackers across different labellings, thus providing a 
simple but effective justification of the status of the attacked argument. The investigation of the use of this kind of virtual explanatory 
gadgets would represent a novel complementary approach with respect to the various explanation means previously considered in 
the literature, like subgraphs [52,53], dialogues [54], and suitable framework changes [55].

5.7. Perspectives on further application domains

Abstract argumentation having been the main reference context to illustrate the use of our proposal in the paper, in this section we 
discuss some perspectives concerning its applicability in other domains. Exploring in detail these investigation directions is beyond 
the scope of this paper and is left to future work.

5.7.1. Qualitative decision making with conflicting attributes

In multiple attribute decision making [56] a decision maker has to make a choice in a set of options on the basis of the values of 
a set of attributes, which are weighted by the decision maker in terms of their importance. The illustrative example in Section 2 can 
be regarded as a (simplified and partial) instance of this family of problems.

In [57] a bipolar qualitative approach to decision making is considered, where each attribute may play a positive, negative, or 
neutral role with respect to an option and attribute importance is assessed on a qualitative scale. Assuming a scale with three levels 
of importance, like ‘Not Important’, ‘Important’, ‘Very Important’, the following set of labels Λ = {++, +, 0, −, −−} can be adopted, 
where the label ++ (−−) indicates a very important positive (negative) attribute, + (−) indicates an important positive (negative) 
attribute, and 0 indicates a neutral attribute.

Letting 𝐴 be a set of attributes the assessment expressed by a decision maker corresponds to a Λ-labelling of the set 𝐴. In an 
example taken directly from [57], the attributes considered in the selection for a travel destination are Landscape, Tennis court, 
Swimming pool, Disco, Price, Airline reputation, Non democratic governance. For instance the assessment of a travel option 𝑜1 might 
consists of the labelling 𝐿1 = {(𝐿, 0), (𝑇 , ++), (𝑆, 0), (𝐷, ++), (𝑃 , −), (𝐴, −)(𝑁, 0)}. In words, in the view of the decision maker, the 
option has two very important positive features (tennis and disco) and two mildly important negative features (price and airline 
reputation). Alternative options would be characterized by other labellings with the same structure. A variety of methods for deriving 
a decision from these labellings are discussed in [57].

Our approach could be applied to extend such a formal context in order to take into account explicitly the possible exis-

tence of conflicts between attributes, not encompassed by the proposal in [57]. In particular, one might however observe (as 
anticipated also in the example in Section 2) that, in presence of some kind of conflict between attributes, some labelling may 
have a dubious status. For instance, in the above example, one might argue that fully enjoying disco and tennis court in the 
same vacation is hardly possible. As a consequence, the labelling 𝐿1 might be regarded as affected by some inconsistency and 
this might be taken into account in the decision process. Consider for instance another option 𝑜2 whose assessment labelling is 
𝐿2 = {(𝐿, 0), (𝑇 , 0), (𝑆, ++), (𝐷, ++), (𝑃 , −), (𝐴, −)(𝑁, 0)}. The methods based on the order of magnitude of the importance of positive 
and negative features proposed in [57] would regard these options as equivalent, however, assuming that there is no conflict be-
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tween enjoying disco and swimming pool, the second option should be regarded as preferable, which could be derived, for instance, 
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by assigning priority to more consistent labellings. We suggest that our approach, allowing a fine grained definition of various levels 
of inconsistency, would be suitable to support an articulated and flexible representation of this kind of enhanced decision criteria.

5.7.2. Multiwinner voting methods with constraints

A multiwinner election, also called committee voting, is an electoral system in which a collection of voters aims to elect multiple 
candidates, called a committee, from a larger set of available candidates [58]. A variety of voting methods can be adopted to this 
purpose, which may differ both in the way expressing votes and in the way the set winners is derived from the sef of expressed votes. 
To exemplify some alternatives concerning the former aspect, in multiwinner approval voting, each voter may select any number12

of candidates, thus just distinguishing between approved and not approved candidates, while in ranked voting each voter expresses 
a linear preference on the set of candidates [59], and in cardinal voting each voter assigns independently to each candidate a grade 
on a given scale. In any case, each vote can be expressed as a labelling of the set of candidates, with a suitable set of labels.

In some contexts, it is desired that the election outcome satisfies some general principles, like gender equality or proper represen-

tation of minorities in the committee. To this purpose, some constraints can be imposed to voters. For instance, with reference to the 
goal of ensuring equality between two groups in a ranked voting system, in [58] the following constraints are considered: imposing 
that the rank is an alternation of the members of the two groups, imposing that the top 𝑘 elements (where 𝑘 is the number of seats in 
the committee) include a given proportion of the two groups, imposing that the top half of the rank include exactly the half of both 
groups. It can be observed that constraints of this kind are rather rigid, and do not seem easily generalizable to the case of cardinal 
voting. Our approach could be used to express diversity constraints in terms of consistency and reinstatement requirements in this 
context. In particular, assuming that the candidates belonging to the same group are related by the intolerance relation, a requirement 
of consistency may impose, for instance, that if a member of a given group receives the top rate by a voter, no other member of the 
same group can receive the top rate by the same voter. On the other hand, a reinstatement requirement may impose that at least a 
member of each group receives a rate at a given level.

The preservation of consistency and reinstatement properties from single votes to the final election outcome would be then an 
interesting subject, in line with the vast amount of studies concerning the properties of voting system, like e.g. [59,60]. In this 
respect it is worth noting that the class of synthesis functions considered in this paper, which is appropriate for the argumentation 
domain, does not appear to be suitable for the voting domain, as pure synthesis cannot encompass notions like counting and majority. 
Investigating other families of synthesis function, possibly borrowing ideas from social choice theory, is a very interesting direction 
of future work.

5.7.3. Legal reasoning

Legal reasoning appears to be another promising domain of application for the notions proposed in this paper. In particular, it is 
interesting to note that the evaluation criteria adopted in this domain may follow specific principles and may vary not only between 
the legal systems of different countries but also depending on the kind of legal procedure, e.g. a criminal trial vs. a civil trial.

For instance, the in dubio pro reo principle can be regarded as a specific form of reinstatement in favour of the presumption 
of innocence, which can be discarded only if there are sufficiently strong evidences against it. This shows that, in some reasoning 
contexts, different criteria can be applied to different entities (e.g. because some are favoured with respect to others), which suggests 
an interesting investigation direction and confirms the importance of having a tunable representation.

Proof standards [61] provide another significant example of potential connection with our proposal. Intuitively, a proof standard 
is a requirement to be met in order to accept an issue at stake, given a set of evidences. Different proof standards correspond to more 
or less demanding requirements and, consequently, to different consistency and reinstatement properties. In particular, the following 
four proof standards are described in [61], on the basis of [62], with reference to common law jurisdiction:

• scintilla of evidence: ‘any evidence at all in a case, even a scintilla, tending to support a material issue’;

• preponderance of evidence: ‘evidence which as a whole shows that the fact sought to be proved is more credible and convincing 
to the mind’;

• clear and convincing evidence: ‘measure or degree of proof which will produce in mind of trier of facts a firm belief or conviction 
as to allegations sought to be established; it is intermediate, being more than preponderance, but not to extent of such certainty 
as is required beyond reasonable doubt’;

• beyond reasonable doubt: ‘requires evidence which leaves the trier of fact fully satisfied, entirely convinced, to a moral certainty’.

These informal descriptions can be given a formal counterpart in terms of arguments pro and con a given proposition, as done in 
[61]. From our perspective, it is interesting to note that they can be put in correspondence with different consistency and reinstatement 
properties. The scintilla of evidence standard gives up any consistency requirement: both a claim and its opposite can be evaluated 
positively by this standard, which does not weight or balance in any way conflicting reasons. In a sense, this corresponds to an extreme 
notion of reinstatement: there is no way to dismiss a conclusion, provided that there is some evidence (even very weak) supporting it. 
The preponderance of evidence standard instead, indicates that the decision is based on the evidence considered more credible. Thus, 
a claim can be dismissed in favour of its opposite if the evidence supporting the latter is considered to be stronger, even by a little 
amount. This can be regarded as pursuing a strong form of consistency, since a positive outcome on one side corresponds to a negative 
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12 Variants of this scheme may impose constraints on this number, e.g. to be lesser or equal than the number of seats in the committee.
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outcome on the other side, and to a weak form of reinstatement, since a conclusion can be dismissed by a small prevailing evidence on 
the opposite side. The clear and convincing evidence and beyond reasonable doubt can then be regarded as ways of trading off consistency 
and reinstatement, up to a certain degree, in the spirit of the in dubio pro reo principle. In both cases (but at different degrees) even if 
a claim is regarded as more credible than its opposite, the latter cannot be dismissed, thus imposing stronger reinstatement violation 
constraints (its rejection is more and more demanding) while partially sacrificing consistency.

Providing a detailed formal counterpart to the intuitions described above, along with investigating notions of (possibly partial) 
property preservation across different proof standards, represents another attractive line of future research, which may also stimulate 
the study of extensions and variations of the proposal presented in this paper.

5.7.4. Belief revision

In general terms, Belief Revision [63,64] studies the process of changing the content of a belief repository when considering the 
arrival of a new piece of information, possibly inconsistent with the previous beliefs. Assuming that the new piece of information 
has the priority, this calls for the retraction of some of the previous belief to restore consistency. Together with consistency, another 
basic principle informs the belief revision process, namely minimal change, which requires that as much as possible of the original 
information is preserved in the process. While our notion of reinstatement does not refer to a dynamic context and hence does not 
encompass a notion of initial state to be preserved, the underlying intuition of avoiding an unnecessarily restricted set of derivations 
is basically the same. Exploring the potential bridges between our proposal and the field of belief revision at large is far beyond the 
scope of the present paper. Here we limit us to some essential considerations.

In [63,64], two paradigmatic extreme cases of revision operator are considered, which are regarded as unsuitable for opposite 
reasons. Let 𝐾 be the belief set to be revised and 𝐴 be the new evidence acquired. At one extreme the revision operator based 
on maxichoice contraction13 is ‘too productive’ since, after the revision, for every proposition 𝐵 the agent either believes 𝐵 or its 
negation, even if 𝐵 was not included in 𝐾 and is not related to 𝐴. At the other extreme, the operator based on full meet contraction is 
‘too restrictive’ since, after the revision, the belief set of the agent coincides with the logical consequences of 𝐴: all the elements of 𝐾
not derivable from 𝐴 are no more believed, even those which were compatible with 𝐴. To avoid these extreme undesirable situations 
an intermediate form of contraction, called partial meet contraction has been identified and characterized. In this scenario, the need 
of tuning the outcomes of the reasoning process and the existence of a set of alternatives have a clear correspondence with the basic 
intuitions motivating our approach.

There are however also some significant differences. First, as already mentioned, in belief revision there is an initial state of belief 
that is the reference for minimal change. In particular, the postulate of recovery concerns the fact that the initial state is recovered if 
a proposition is added after having been retracted. The underlying intuition is rather different from our notion of reinstatement, in 
particular no intolerance relation is involved. Another remark concerns the fact that the ‘tuning’ of the outcomes of the belief revision 
process is driven by an ordering of importance of beliefs called epistemic entrenchment [64]. Epistemic entrenchment has intuitively 
to do with the explanatory power of initially held beliefs, a notion which has no direct counterpart in our model. Furthermore, it can 
be observed that in belief revision the focus is on indirect inconsistency, which suggests that a suitable notion of intolerance in this 
context should probably refer to sets of propositions.

In our opinion, these dissimilarities make particularly challenging, but also particularly interesting, the investigation of connections 
between our proposal and the field of belief revision. As possible starting points, we mention approaches to belief revision with 
multiple levels of credibility, like e.g. [65], and the formalism encompassing attacks at the level of sets of arguments proposed in 
[66].

6. Conclusions

In this paper we have introduced a novel domain-independent formalization of consistency and reinstatement as general properties 
of any labelling-based assessment produced by a reasoning process. As a demonstration of the approach’s potential, we have illustrated 
its capability to provide an original characterization of several abstract argumentation semantics.

We have then investigated the issue of preserving these properties when a synthetic labelling is derived from other labellings. 
Using the synthesis of argument justification as an illustrative instance, we have obtained a general characterization of consistency 
preservation synthesis functions and provided an impossibility result for reinstatement preservation. This led us to investigate a weaker 
reinstatement preservation notion. Along this journey, we evidenced a limitation of the traditional notion of argument justification 
and proposed an improved version.

As discussed in Section 5, this work has multifaceted connections both with various investigation topics in formal argumentation 
and, more generally, with the study of various forms of reasoning whose outcomes can be modelled in terms of production of 
labellings, possibly in a multi-stage setting. A wide variety of potential future developments is therefore envisaged. In addition to 
those discussed in Section 5, we mention that one can consider complementary bounds also for the outcomes of learning processes 
(e.g., a learned model should adhere to the training data but not be overfitting) and that different types of uncertainty have to be 
taken into account for them (like aleatoric and epistemic uncertainty [67,68]). It will then be interesting to explore the connections 
between these notions and our approach.

13 A belief revision operator can be defined in terms of a contraction and an expansion operator, according to the Levi’s identity. Recalling the relevant technical 
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details is beyond the scope of this paper.
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